Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Biol. Chem. 279 (5): 3563-3572

© 2004 by The American Society for Biochemistry and Molecular Biology, Inc.

The Coactivator of Transcription CREB-binding Protein Interacts Preferentially with the Glycosylated Form of Stat5*

Christina Gewinner{ddagger}§, Gerald Hart¶, Natasha Zachara¶, Robert Cole¶, Christian Beisenherz-Huss||, , and Bernd Groner{ddagger}

{ddagger}Georg-Speyer-Haus, Institute for Biomedical Research, Paul-Ehrlich Strasse 42-44, D-60596 Frankfurt am Main, Germany, the Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, Baltimore, Maryland 12205-2185, and the ||Institute for Anatomy I, University of Freiburg, Albertstrasse 23, D-79104 Freiburg, Germany

Abstract: The signal transducer and activator of transcription (Stat) gene family comprises seven members with similarities in their domain structure and a common mode of activation. Members of this gene family mediate interferon induction of gene transcription and the response to a large number of growth factors and hormones. Extracellular ligand binding to transmembrane receptors causes the intracellular activation of associated tyrosine kinases, phosphorylation of Stat molecules, dimerization, and translocation to the nucleus. Prolactin-induced phosphorylation of Stat5 is a key event in the development and differentiation of mammary epithelial cells. In addition to the crucial phosphorylation at tyrosine 694, we have identified an O-linked N-acetylglucosamine (O-GlcNAc) as another secondary modification essential for the transcriptional induction by Stat5. This modification was only found on nuclear Stat5 after cytokine activation. Similar observations were made with Stat1, Stat3, and Stat6. Glycosylation of Stat5, however, does not seem to be a prerequisite for nuclear translocation. Mass spectrometric analysis revealed a glycosylated peptide in the N-terminal region of Stat5. Replacement of threonine 92 by an alanine residue (Stat5a-T92A) strongly reduced the prolactin induction of Stat5a glycosylation and abolished transactivation of a target gene promoter. Only the glycosylated form of Stat5 was able to bind the coactivator of transcription CBP, an essential interaction for Stat5-mediated gene transcription.

Received for publication June 18, 2003. Revision received October 28, 2003.

* The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

§ To whom correspondence should be addressed: Beth Israel Deaconess Medical Center, Division of Signal Transduction, 330 Brookline Ave., HIM 1018, Boston, MA 02215. Tel.: 1-617-667-5874; Fax: 1-617-667-0957; E-mail: cgewinne{at}

O-GlcNAcylation regulates EZH2 protein stability and function.
C.-S. Chu, P.-W. Lo, Y.-H. Yeh, P.-H. Hsu, S.-H. Peng, Y.-C. Teng, M.-L. Kang, C.-H. Wong, and L.-J. Juan (2014)
PNAS 111, 1355-1360
   Abstract »    Full Text »    PDF »
TRIB3 Mediates Glucose-Induced Insulin Resistance via a Mechanism That Requires the Hexosamine Biosynthetic Pathway.
W. Zhang, J. Liu, L. Tian, Q. Liu, Y. Fu, and W. T. Garvey (2013)
Diabetes 62, 4192-4200
   Abstract »    Full Text »    PDF »
Dietary Components in the Development of Leptin Resistance.
J. R. Vasselli, P. J. Scarpace, R. B. S. Harris, and W. A. Banks (2013)
Adv Nutr 4, 164-175
   Abstract »    Full Text »    PDF »
Modulation of Dynamin-related Protein 1 (DRP1) Function by Increased O-linked-{beta}-N-acetylglucosamine Modification (O-GlcNAc) in Cardiac Myocytes.
T. Gawlowski, J. Suarez, B. Scott, M. Torres-Gonzalez, H. Wang, R. Schwappacher, X. Han, J. R. Yates III, M. Hoshijima, and W. Dillmann (2012)
J. Biol. Chem. 287, 30024-30034
   Abstract »    Full Text »    PDF »
Metabolic labeling enables selective photocrosslinking of O-GlcNAc-modified proteins to their binding partners.
S.-H. Yu, M. Boyce, A. M. Wands, M. R. Bond, C. R. Bertozzi, and J. J. Kohler (2012)
PNAS 109, 4834-4839
   Abstract »    Full Text »    PDF »
Cellular Content of UDP-N-acetylhexosamines Controls Hyaluronan Synthase 2 Expression and Correlates with O-Linked N-Acetylglucosamine Modification of Transcription Factors YY1 and SP1.
T. A. Jokela, K. M. Makkonen, S. Oikari, R. Karna, E. Koli, G. W. Hart, R. H. Tammi, C. Carlberg, and M. I. Tammi (2011)
J. Biol. Chem. 286, 33632-33640
   Abstract »    Full Text »    PDF »
Chemical reporters for fluorescent detection and identification of O-GlcNAc-modified proteins reveal glycosylation of the ubiquitin ligase NEDD4-1.
B. W. Zaro, Y.-Y. Yang, H. C. Hang, and M. R. Pratt (2011)
PNAS 108, 8146-8151
   Abstract »    Full Text »    PDF »
O-Linked {beta}-N-acetylglucosamine (O-GlcNAc) Regulates Stress-induced Heat Shock Protein Expression in a GSK-3{beta}-dependent Manner.
Z. Kazemi, H. Chang, S. Haserodt, C. McKen, and N. E. Zachara (2010)
J. Biol. Chem. 285, 39096-39107
   Abstract »    Full Text »    PDF »
Glutaredoxin 1 regulates cigarette smoke-mediated lung inflammation through differential modulation of I{kappa}B kinases in mice: impact on histone acetylation.
S. Chung, I. K. Sundar, H. Yao, Y.-S. Ho, and I. Rahman (2010)
Am J Physiol Lung Cell Mol Physiol 299, L192-L203
   Abstract »    Full Text »    PDF »
O-GlcNAc Signaling in the Cardiovascular System.
G. A. Ngoh, H. T. Facundo, A. Zafir, and S. P. Jones (2010)
Circ. Res. 107, 171-185
   Abstract »    Full Text »    PDF »
O-GlcNAcylation/Phosphorylation Cycling at Ser10 Controls Both Transcriptional Activity and Stability of {Delta}-Lactoferrin.
S. Hardiville, E. Hoedt, C. Mariller, M. Benaissa, and A. Pierce (2010)
J. Biol. Chem. 285, 19205-19218
   Abstract »    Full Text »    PDF »
N-linked glycosylation is required for optimal proteolytic activation of membrane-bound transcription factor CREB-H.
C.-P. Chan, T.-Y. Mak, K.-T. Chin, I. O.-L. Ng, and D.-Y. Jin (2010)
J. Cell Sci. 123, 1438-1448
   Abstract »    Full Text »    PDF »
STAT5 requires the N-domain for suppression of miR15/16, induction of bcl-2, and survival signaling in myeloproliferative disease.
G. Li, K. L. Miskimen, Z. Wang, X. Y. Xie, J. Brenzovich, J. J. Ryan, W. Tse, R. Moriggl, and K. D. Bunting (2010)
Blood 115, 1416-1424
   Abstract »    Full Text »    PDF »
Impaired transcription factor interplay in addition to advanced glycation end products suppress podocalyxin expression in high glucose-treated human podocytes.
G. I. Drossopoulou, N. E. Tsotakos, and E. C. Tsilibary (2009)
Am J Physiol Renal Physiol 297, F594-F603
   Abstract »    Full Text »    PDF »
Loss of STAT5 causes liver fibrosis and cancer development through increased TGF-{beta} and STAT3 activation.
A. Hosui, A. Kimura, D. Yamaji, B.-m. Zhu, R. Na, and L. Hennighausen (2009)
J. Exp. Med. 206, 819-831
   Abstract »    Full Text »    PDF »
Up-regulation of O-GlcNAc Transferase with Glucose Deprivation in HepG2 Cells Is Mediated by Decreased Hexosamine Pathway Flux.
R. P. Taylor, T. S. Geisler, J. H. Chambers, and D. A. McClain (2009)
J. Biol. Chem. 284, 3425-3432
   Abstract »    Full Text »    PDF »
SHD1 is a novel cytokine-inducible, negative feedback regulator of STAT5-dependent transcription.
H. Nakajima, T. Tamura, M. Ito, F. Shibata, K. Kuroda, Y. Fukuchi, N. Watanabe, T. Kitamura, Y. Ikeda, and M. Handa (2009)
Blood 113, 1027-1036
   Abstract »    Full Text »    PDF »
Increased Enzymatic O-GlcNAcylation of Mitochondrial Proteins Impairs Mitochondrial Function in Cardiac Myocytes Exposed to High Glucose.
Y. Hu, J. Suarez, E. Fricovsky, H. Wang, B. T. Scott, S. A. Trauger, W. Han, Y. Hu, M. O. Oyeleye, and W. H. Dillmann (2009)
J. Biol. Chem. 284, 547-555
   Abstract »    Full Text »    PDF »
Identification of Structural and Functional O-Linked N-Acetylglucosamine-bearing Proteins in Xenopus laevis Oocyte.
V. Dehennaut, M.-C. Slomianny, A. Page, A.-S. Vercoutter-Edouart, C. Jessus, J.-C. Michalski, J.-P. Vilain, J.-F. Bodart, and T. Lefebvre (2008)
Mol. Cell. Proteomics 7, 2229-2245
   Abstract »    Full Text »    PDF »
Regulation of the O-Linked {beta}-N-Acetylglucosamine Transferase by Insulin Signaling.
S. A. Whelan, M. D. Lane, and G. W. Hart (2008)
J. Biol. Chem. 283, 21411-21417
   Abstract »    Full Text »    PDF »
Signal transducer and activator of transcription 5A/B in prostate and breast cancers.
S.-H. Tan and M. T Nevalainen (2008)
Endocr. Relat. Cancer 15, 367-390
   Abstract »    Full Text »    PDF »
JAK-STAT Signaling: From Interferons to Cytokines.
C. Schindler, D. E. Levy, and T. Decker (2007)
J. Biol. Chem. 282, 20059-20063
   Full Text »    PDF »
Expression of the Rat Sterol Regulatory Element-binding Protein-1c Gene in Response to Insulin Is Mediated by Increased Transactivating Capacity of Specificity Protein 1 (Sp1).
X. Deng, C. Yellaturu, L. Cagen, H. G. Wilcox, E. A. Park, R. Raghow, and M. B. Elam (2007)
J. Biol. Chem. 282, 17517-17529
   Abstract »    Full Text »    PDF »
Glucose Mediates the Translocation of NeuroD1 by O-Linked Glycosylation.
S. S. Andrali, Q. Qian, and S. Ozcan (2007)
J. Biol. Chem. 282, 15589-15596
   Abstract »    Full Text »    PDF »
Regulatory T cell-mediated suppression: potential role of ICER.
J. Bodor, Z. Fehervari, B. Diamond, and S. Sakaguchi (2007)
J. Leukoc. Biol. 81, 161-167
   Abstract »    Full Text »    PDF »
Identification of the cAMP-Responsive Enhancer of the Murine ABCA1 Gene: Requirement for CREB1 and STAT3/4 Elements.
W. Le Goff, P. Zheng, G. Brubaker, and J. D. Smith (2006)
Arterioscler Thromb Vasc Biol 26, 527-533
   Abstract »    Full Text »    PDF »
Hexosamines, insulin resistance, and the complications of diabetes: current status.
M. G. Buse (2006)
Am J Physiol Endocrinol Metab 290, E1-E8
   Abstract »    Full Text »    PDF »
Nuclear Localization of STAT5A Modified with O-Linked N-Acetylglucosamine and Early Involution in the Mammary Gland of Hirosaki Hairless Rat.
N. Nanashima, J. Asano, M. Hayakari, T. Nakamura, H. Nakano, T. Yamada, T. Shimizu, M. Akita, Y. Fan, and S. Tsuchida (2005)
J. Biol. Chem. 280, 43010-43016
   Abstract »    Full Text »    PDF »
The Hexosamine Signaling Pathway: Deciphering the "O-GlcNAc Code".
D. C. Love and J. A. Hanover (2005)
Sci. STKE 2005, re13
   Abstract »    Full Text »    PDF »
Prolactin Signals Through RUSH/SMARCA3 in the Absence of a Physical Association with Stat5a.
A. Hewetson, S. L. Moore, and B. S. Chilton (2004)
Biol Reprod 71, 1907-1912
   Abstract »    Full Text »    PDF »
Exploring the O-GlcNAc proteome: Direct identification of O-GlcNAc-modified proteins from the brain.
N. Khidekel, S. B. Ficarro, E. C. Peters, and L. C. Hsieh-Wilson (2004)
PNAS 101, 13132-13137
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882