Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Biol. Chem. 280 (11): 10040-10046

© 2005 by The American Society for Biochemistry and Molecular Biology, Inc.

Resistance to Endotoxic Shock in Endothelial Nitric-oxide Synthase (eNOS) Knock-out Mice

A PRO-INFLAMMATORY ROLE FOR eNOS-DERIVED NO IN VIVO*{diamondsuit}

Linda Connelly{ddagger}, Melanie Madhani, , and Adrian J. Hobbs§

Wolfson Institute for Biomedical Research, University College London, Cruciform Building, Gower Street, London WC1E 6AE, United Kingdom

Abstract: The expression of inducible nitric-oxide synthase (iNOS) and subsequent "high-output" nitric oxide (NO) production underlies the systemic hypotension, inadequate tissue perfusion, and organ failure associated with septic shock. Therefore, modulators of iNOS expression and activity, both endogenous and exogenous, are important in determining the magnitude and time course of this condition. We have shown previously that NO from the constitutive endothelial NOS (eNOS) is necessary to obtain maximal iNOS expression and activity following exposure of murine macrophages to lipopolysaccharide (LPS). Thus, eNOS represents an important regulator of iNOS expression in vitro. Herein, we validate this hypothesis in vivo using a murine model of sepsis. A temporal reduction in iNOS expression and activity was observed in LPS-treated eNOS knock-out (KO) mice as compared with wild-type animals; this was reflected in a more stable hemodynamic profile in eNOS KO mice during endotoxaemia. Furthermore, in human umbilical vein endothelial cells, LPS leads to the activation of eNOS through phosphoinositide 3-kinase- and Akt/protein kinase B-dependent enzyme phosphorylation. These data indicate that the pathogenesis of sepsis is characterized by an initial eNOS activation, with the resultant NO acting as a co-stimulus for the expression of iNOS, and therefore highlight a novel pro-inflammatory role for eNOS.


Received for publication October 22, 2004. Revision received December 17, 2004.

* The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

{diamondsuit} This article was selected as a Paper of the Week.

{ddagger} Recipient of a Wellcome Trust International Prize Travelling Research Fellowship.

§ Recipient of a Wellcome Trust Senior Fellowship in Basic Biomedical Sciences. To whom correspondence should be addressed. Tel.: 44-20-7679-6611; Fax: 44-20-7691-3104; E-mail: a.hobbs{at}ucl.ac.uk.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Endothelial glucocorticoid receptor is required for protection against sepsis.
J. E. Goodwin, Y. Feng, H. Velazquez, and W. C. Sessa (2013)
PNAS 110, 306-311
   Abstract »    Full Text »    PDF »
Olprinone and colforsin daropate alleviate septic lung inflammation and apoptosis through CREB-independent activation of the Akt pathway.
H. Oishi, K.-i. Takano, K. Tomita, M. Takebe, H. Yokoo, M. Yamazaki, and Y. Hattori (2012)
Am J Physiol Lung Cell Mol Physiol 303, L130-L140
   Abstract »    Full Text »    PDF »
G-protein-coupled Receptor Kinase Interactor-1 (GIT1) Is a New Endothelial Nitric-oxide Synthase (eNOS) Interactor with Functional Effects on Vascular Homeostasis.
S. Liu, R. T. Premont, and D. C. Rockey (2012)
J. Biol. Chem. 287, 12309-12320
   Abstract »    Full Text »    PDF »
Disruption of COX-2 and eNOS does not confer protection from cardiovascular failure in lipopolysaccharide-treated conscious mice and isolated vascular rings.
M. Staehr, K. Madsen, P. M. Vanhoutte, P. B. Hansen, and B. L. Jensen (2011)
Am J Physiol Regulatory Integrative Comp Physiol 301, R412-R420
   Abstract »    Full Text »    PDF »
Caveolin-1 Protects against Sepsis by Modulating Inflammatory Response, Alleviating Bacterial Burden, and Suppressing Thymocyte Apoptosis.
H. Feng, L. Guo, Z. Song, H. Gao, D. Wang, W. Fu, J. Han, Z. Li, B. Huang, and X.-A. Li (2010)
J. Biol. Chem. 285, 25154-25160
   Abstract »    Full Text »    PDF »
Beneficial microvascular and anti-inflammatory effects of pravastatin during sepsis involve nitric oxide synthase III.
C. C. McGown, N. J. Brown, P. G. Hellewell, C. S. Reilly, and Z. L. S. Brookes (2010)
Br. J. Anaesth. 104, 183-190
   Abstract »    Full Text »    PDF »
Nitrite protects against morbidity and mortality associated with TNF- or LPS-induced shock in a soluble guanylate cyclase-dependent manner.
A. Cauwels, E. S. Buys, R. Thoonen, L. Geary, J. Delanghe, S. Shiva, and P. Brouckaert (2009)
J. Exp. Med. 206, 2915-2924
   Abstract »    Full Text »    PDF »
sGC{alpha}1{beta}1 attenuates cardiac dysfunction and mortality in murine inflammatory shock models.
E. S. Buys, A. Cauwels, M. J. Raher, J. J. Passeri, I. Hobai, S. M. Cawley, K. M. Rauwerdink, H. Thibault, P. Y. Sips, R. Thoonen, et al. (2009)
Am J Physiol Heart Circ Physiol 297, H654-H663
   Abstract »    Full Text »    PDF »
Recombinant human activated protein C improves endotoxemia-induced endothelial dysfunction: a blood-free model in isolated mouse arteries.
N. Sennoun, C. Baron-Menguy, M. Burban, T. Lecompte, R. Andriantsitohaina, D. Henrion, A. Mercat, P. Asfar, B. Levy, and F. Meziani (2009)
Am J Physiol Heart Circ Physiol 297, H277-H282
   Abstract »    Full Text »    PDF »
Pulmonary Disease in Hamsters Infected with Leptospira interrogans: Histopathologic Findings and Cytokine mRNA Expressions.
M. Marinho, I. S. Oliveira-Junior, C. M. R. Monteiro, S. H. Perri, and R. Salomao (2009)
Am J Trop Med Hyg 80, 832-836
   Abstract »    Full Text »    PDF »
Role of endothelial nitric oxide synthase-derived nitric oxide in activation and dysfunction of cerebrovascular endothelial cells during early onsets of sepsis.
O. Handa, J. Stephen, and G. Cepinskas (2008)
Am J Physiol Heart Circ Physiol 295, H1712-H1719
   Abstract »    Full Text »    PDF »
Circulating Endothelial Progenitor Cells in Patients With Eisenmenger Syndrome and Idiopathic Pulmonary Arterial Hypertension.
G.-P. Diller, S. van Eijl, D. O. Okonko, L. S. Howard, O. Ali, T. Thum, S. J. Wort, E. Bedard, J. S. R. Gibbs, J. Bauersachs, et al. (2008)
Circulation 117, 3020-3030
   Abstract »    Full Text »    PDF »
Critical control points in the impact of the proinflammatory immune response on growth and metabolism.
T. H. Elsasser, T. J. Caperna, C-J. Li, S. Kahl, and J. L. Sartin (2008)
J Anim Sci 86, E105-E125
   Abstract »    Full Text »    PDF »
Nitric-oxide Synthase 2 Interacts with CD74 and Inhibits Its Cleavage by Caspase during Dendritic Cell Development.
D. Huang, D. T. Cai, R. Y. R. Chua, D. M. Kemeny, and S. H. Wong (2008)
J. Biol. Chem. 283, 1713-1722
   Abstract »    Full Text »    PDF »
Sepsis is associated with an upregulation of functional {beta}3 adrenoceptors in the myocardium.
S. Moniotte, C. Belge, B. Sekkali, P.B. Massion, B. Rozec, C. Dessy, and J.-L. Balligand (2007)
Eur J Heart Fail 9, 1163-1171
   Abstract »    Full Text »    PDF »
Induction of IRAK-M Is Associated with Lipopolysaccharide Tolerance in a Human Endotoxemia Model.
C. van 't Veer, P. S. van den Pangaart, M. A. D. van Zoelen, M. de Kruif, R. S. Birjmohun, E. S. Stroes, A. F. de Vos, and T. van der Poll (2007)
J. Immunol. 179, 7110-7120
   Abstract »    Full Text »    PDF »
Lipopolysaccharide Induces Early Tolerance to Excitotoxicity via Nitric Oxide and cGMP.
M. Orio, A. Kunz, T. Kawano, J. Anrather, P. Zhou, and C. Iadecola (2007)
Stroke 38, 2812-2817
   Abstract »    Full Text »    PDF »
Sepsis and the Heart.
M.W. Merx and C. Weber (2007)
Circulation 116, 793-802
   Abstract »    Full Text »    PDF »
Beneficial effects of statins on the microcirculation during sepsis: the role of nitric oxide.
C. C. McGown and Z. L. S. Brookes (2007)
Br. J. Anaesth. 98, 163-175
   Abstract »    Full Text »    PDF »
Nitrite-Derived Nitric Oxide Protects the Rat Kidney against Ischemia/Reperfusion Injury In Vivo: Role for Xanthine Oxidoreductase.
P. Tripatara, N. S.A. Patel, A. Webb, K. Rathod, F. M.J. Lecomte, E. Mazzon, S. Cuzzocrea, M. M. Yaqoob, A. Ahluwalia, and C. Thiemermann (2007)
J. Am. Soc. Nephrol. 18, 570-580
   Abstract »    Full Text »    PDF »
Cardiomyocyte-Specific Overexpression of Nitric Oxide Synthase 3 Prevents Myocardial Dysfunction in Murine Models of Septic Shock.
F. Ichinose, E. S. Buys, T. G. Neilan, E. M. Furutani, J. G. Morgan, D. S. Jassal, A. R. Graveline, R. J. Searles, C. C. Lim, M. Kaneki, et al. (2007)
Circ. Res. 100, 130-139
   Abstract »    Full Text »    PDF »
Phosphorylation of Endothelial Nitric-Oxide Synthase Is Diminished in Mesenteric Arteries from Septic Rabbits Depending on the Altered Phosphatidylinositol 3-Kinase/Akt Pathway: Reversal Effect of Fluvastatin Therapy.
N. Matsuda, Y. Hayashi, Y. Takahashi, and Y. Hattori (2006)
J. Pharmacol. Exp. Ther. 319, 1348-1354
   Abstract »    Full Text »    PDF »
Caveolin-1 Regulates NF-{kappa}B Activation and Lung Inflammatory Response to Sepsis Induced by Lipopolysaccharide.
S. Garrean, X.-P. Gao, V. Brovkovych, J. Shimizu, Y.-Y. Zhao, S. M. Vogel, and A. B. Malik (2006)
J. Immunol. 177, 4853-4860
   Abstract »    Full Text »    PDF »
Nitric Oxide Signaling via Nuclearized Endothelial Nitric-oxide Synthase Modulates Expression of the Immediate Early Genes iNOS and mPGES-1.
F. Gobeil Jr., T. Zhu, S. Brault, A. Geha, A. Vazquez-Tello, A. Fortier, D. Barbaz, D. Checchin, X. Hou, M. Nader, et al. (2006)
J. Biol. Chem. 281, 16058-16067
   Abstract »    Full Text »    PDF »
Endothelial Nitric Oxide Synthase: Host Defense Enzyme of the Endothelium?.
T. J. Rabelink and T. F. Luscher (2006)
Arterioscler Thromb Vasc Biol 26, 267-271
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882