Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Biol. Chem. 280 (2): 1438-1447

© 2005 by The American Society for Biochemistry and Molecular Biology, Inc.

Phospholipase Cβ2 Binds to and Inhibits Phospholipase C{delta}1*Formula

Yuanjian Guo, Mario Rebecchi, , and Suzanne Scarlata{ddagger}

Department of Physiology and Biophysics and the Department of Anesthesiology, State University of New York, Stony Brook, New York 11794-8661

Abstract: Phospholipase Cβ (PLCβ) isoforms, which are under the control of Gαq and Gβ{gamma} subunits, generate Ca2+ signals induced by a broad array of extracellular agonists, whereas PLC{delta} isoforms depend on a rise in cytosolic Ca2+ for their activation. Here we find that PLCβ2 binds strongly to PLC{delta}1 and inhibits its catalytic activity in vitro and in living cells. In vitro, this PLC complex can be disrupted by increasing concentrations of free Gβ{gamma} subunits. Such competition has consequences for signaling, because in HEK293 cells PLCβ2 suppresses elevated basal [Ca2+] and inositol phosphates levels and the sustained agonist-induced elevation of Ca2+ levels caused by PLC{delta}1. Also, expression of both PLCs results in a synergistic release of [Ca2+] upon stimulation in A10 cells. These results support a model in which PLCβ2 suppresses the basal catalytic activity of PLC{delta}1, which is relieved by binding of Gβ{gamma} subunits to PLCβ2 allowing for amplified calcium signals.


Received for publication July 7, 2004. Revision received October 25, 2004.

{ddagger} To whom correspondence to should be addressed. Tel.: 631-444-3071; Fax: 631-444-3432; E-mail: Suzanne.Scarlata{at}sunysb.edu.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Genome-wide bimolecular fluorescence complementation analysis of SUMO interactome in yeast.
M.-K. Sung, G. Lim, D.-G. Yi, Y. J. Chang, E. B. Yang, K. Lee, and W.-K. Huh (2013)
Genome Res. 23, 736-746
   Abstract »    Full Text »    PDF »
Phospholipase C{beta}1 is linked to RNA interference of specific genes through translin-associated factor X.
F. Philip, Y. Guo, O. Aisiku, and S. Scarlata (2012)
FASEB J 26, 4903-4913
   Abstract »    Full Text »    PDF »
Mechanism of Fusion Triggering by Human Parainfluenza Virus Type III: COMMUNICATION BETWEEN VIRAL GLYCOPROTEINS DURING ENTRY.
M. Porotto, S. G. Palmer, L. M. Palermo, and A. Moscona (2012)
J. Biol. Chem. 287, 778-793
   Abstract »    Full Text »    PDF »
Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging.
R. S. Kasai, K. G. N. Suzuki, E. R. Prossnitz, I. Koyama-Honda, C. Nakada, T. K. Fujiwara, and A. Kusumi (2011)
J. Cell Biol. 192, 463-480
   Abstract »    Full Text »    PDF »
The Rsr1/Bud1 GTPase Interacts with Itself and the Cdc42 GTPase during Bud-Site Selection and Polarity Establishment in Budding Yeast.
P. J. Kang, L. Beven, S. Hariharan, and H.-O. Park (2010)
Mol. Biol. Cell 21, 3007-3016
   Abstract »    Full Text »    PDF »
The Small G Protein Rac1 Activates Phospholipase C{delta}1 through Phospholipase C{beta}2.
Y. Guo, U. Golebiewska, S. D'Amico, and S. Scarlata (2010)
J. Biol. Chem. 285, 24999-25008
   Abstract »    Full Text »    PDF »
Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues.
D. M. Chudakov, M. V. Matz, S. Lukyanov, and K. A. Lukyanov (2010)
Physiol Rev 90, 1103-1163
   Abstract »    Full Text »    PDF »
Dimerization of adiponectin receptor 1 is inhibited by adiponectin.
D. Kosel, J. T. Heiker, C. Juhl, C. M. Wottawah, M. Bluher, K. Morl, and A. G. Beck-Sickinger (2010)
J. Cell Sci. 123, 1320-1328
   Abstract »    Full Text »    PDF »
Spatiotemporal patterns and transcription kinetics of induced RNA in single bacterial cells.
M. Valencia-Burton, A. Shah, J. Sutin, A. Borogovac, R. M. McCullough, C. R. Cantor, A. Meller, and N. E. Broude (2009)
PNAS 106, 16399-16404
   Abstract »    Full Text »    PDF »
Phospholipase C-{delta}1 modulates sustained contraction of rat mesenteric small arteries in response to noradrenaline, but not endothelin-1.
C. J. Clarke, S. Forman, J. Pritchett, V. Ohanian, and J. Ohanian (2008)
Am J Physiol Heart Circ Physiol 295, H826-H834
   Abstract »    Full Text »    PDF »
Caveolin-1 alters Ca2+ signal duration through specific interaction with the G{alpha}q family of G proteins.
P. Sengupta, F. Philip, and S. Scarlata (2008)
J. Cell Sci. 121, 1363-1372
   Abstract »    Full Text »    PDF »
Use of Bimolecular Fluorescence Complementation To Study In Vivo Interactions between Cdc42p and Rdi1p of Saccharomyces cerevisiae.
K. C. Cole, H. W. McLaughlin, and D. I. Johnson (2007)
Eukaryot. Cell 6, 378-387
   Abstract »    Full Text »    PDF »
Phospholipase C Isoforms Are Localized at the Cleavage Furrow during Cytokinesis.
Y. Naito, M. Okada, and H. Yagisawa (2006)
J. Biochem. 140, 785-791
   Abstract »    Full Text »    PDF »
Phospholipase C-beta3 and -beta1 Form Homodimers, but Not Heterodimers, through Catalytic and Carboxyl-Terminal Domains.
Y. Zhang, W. K. Vogel, J. S. McCullar, J. A. Greenwood, and T. M. Filtz (2006)
Mol. Pharmacol. 70, 860-868
   Abstract »    Full Text »    PDF »
Real-Time Measurements of Protein Affinities on Membrane Surfaces by Fluorescence Spectroscopy.
F. Philip and S. Scarlata (2006)
Sci. STKE 2006, pl5
   Abstract »    Full Text »    PDF »
Isozyme-specific Stimulation of Phospholipase C-{gamma}2 by Rac GTPases.
T. Piechulek, T. Rehlen, C. Walliser, P. Vatter, B. Moepps, and P. Gierschik (2005)
J. Biol. Chem. 280, 38923-38931
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882