Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Biol. Chem. 280 (21): 20589-20595

© 2005 by The American Society for Biochemistry and Molecular Biology, Inc.

Nuclear Trapping of the Forkhead Transcription Factor FoxO1 via Sirt-dependent Deacetylation Promotes Expression of Glucogenetic Genes*

David Frescas{ddagger}, Luca Valenti{ddagger}, , and Domenico Accili§

Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York 10032

Abstract: Activation of NAD-dependent deacetylases, or Sirtuins, prolongs life span and mimics the effects of caloric restriction in yeast. The FoxO subfamily of forkhead transcription factors has been shown to mediate some of the effects of Sirtuins. Here we have shown that Sirtuin activation or hydrogen peroxide treatment overrides the phosphorylation-dependent nuclear exclusion of FoxO1 caused by growth factors and causes nuclear translocation of FoxO1 in hepatocytes. Kinetic measurements of nuclear fluorescence recovery after photobleaching show that FoxO1 is readily diffusible within the nucleus under normal conditions but becomes restricted within a nuclear subdomain following treatment with the prototypical Sirtuin agonist resveratrol or oxidative stress. Expression of FoxO1 target genes is accordingly increased, leading to activation of gluconeogenesis and increased glucose release from hepatocytes. Selective modulation of the FoxO/Sirtuin interaction represents a promising therapeutic modality for metabolic disorders.

Received for publication November 1, 2004. Revision received March 18, 2005.

* This work was supported by National Institutes of Health Grants DK57539 and DK63608 (Columbia Diabetes and Endocrinology Research Center). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

{ddagger} Both authors contributed equally to this work.

§ To whom correspondence should be addressed: 1150 St. Nicholas Ave., New York, NY 10032. Tel.: 212-851-5332; Fax: 212-851-5331; E-mail: da230{at}

Mathematical modeling reveals modulation of both nuclear influx and efflux of Foxo1 by the IGF-I/PI3K/Akt pathway in skeletal muscle fibers.
R. J. Wimmer, Y. Liu, T. N. Schachter, D. P. Stonko, B. E. Peercy, and M. F. Schneider (2014)
Am J Physiol Cell Physiol 306, C570-C584
   Abstract »    Full Text »    PDF »
Deleted in Breast Cancer 1 (DBC1) Protein Regulates Hepatic Gluconeogenesis.
V. Nin, C. C. S. Chini, C. Escande, V. Capellini, and E. N. Chini (2014)
J. Biol. Chem. 289, 5518-5527
   Abstract »    Full Text »    PDF »
FoxO1 Deacetylation Regulates Thyroid Hormone-induced Transcription of Key Hepatic Gluconeogenic Genes.
B. K. Singh, R. A. Sinha, J. Zhou, S. Y. Xie, S.-H. You, K. Gauthier, and P. M. Yen (2013)
J. Biol. Chem. 288, 30365-30372
   Abstract »    Full Text »    PDF »
SIRT1 regulates adaptive response of the growth hormone--insulin-like growth factor-I axis under fasting conditions in liver.
M. Yamamoto, G. Iguchi, H. Fukuoka, K. Suda, H. Bando, M. Takahashi, H. Nishizawa, S. Seino, and Y. Takahashi (2013)
PNAS 110, 14948-14953
   Abstract »    Full Text »    PDF »
The Diversity of Histone Versus Nonhistone Sirtuin Substrates.
P. Martinez-Redondo and A. Vaquero (2013)
Genes & Cancer
   Abstract »    Full Text »    PDF »
Stress Inducibility of SIRT1 and Its Role in Cytoprotection and Cancer.
R. Raynes, J. Brunquell, and S. D. Westerheide (2013)
Genes & Cancer
   Abstract »    Full Text »    PDF »
Loss of TIMP3 underlies diabetic nephropathy via FoxO1/STAT1 interplay.
L. Fiorentino, M. Cavalera, S. Menini, V. Marchetti, M. Mavilio, M. Fabrizi, F. Conserva, V. Casagrande, R. Menghini, P. Pontrelli, et al. (2013)
EMBO Mol Med. 5, 441-455
   Abstract »    Full Text »    PDF »
FOXO Transcription Factors Regulate Innate Immune Mechanisms in Respiratory Epithelial Cells.
F. Seiler, J. Hellberg, P. M. Lepper, A. Kamyschnikow, C. Herr, M. Bischoff, F. Langer, H.-J. Schafers, F. Lammert, M. D. Menger, et al. (2013)
J. Immunol. 190, 1603-1613
   Abstract »    Full Text »    PDF »
SIRT1 and energy metabolism.
X. Li (2013)
Acta Biochim Biophys Sin 45, 51-60
   Abstract »    Full Text »    PDF »
Leucine supplementation increases SIRT1 expression and prevents mitochondrial dysfunction and metabolic disorders in high-fat diet-induced obese mice.
H. Li, M. Xu, J. Lee, C. He, and Z. Xie (2012)
Am J Physiol Endocrinol Metab 303, E1234-E1244
   Abstract »    Full Text »    PDF »
Sirtuin 1 and Sirtuin 3: Physiological Modulators of Metabolism.
R. Nogueiras, K. M. Habegger, N. Chaudhary, B. Finan, A. S. Banks, M. O. Dietrich, T. L. Horvath, D. A. Sinclair, P. T. Pfluger, and M. H. Tschop (2012)
Physiol Rev 92, 1479-1514
   Abstract »    Full Text »    PDF »
Increased Atherosclerosis and Endothelial Dysfunction in Mice Bearing Constitutively Deacetylated Alleles of Foxo1 Gene.
L. Qiang, K. Tsuchiya, J.-Y. Kim-Muller, H. V. Lin, C. Welch, and D. Accili (2012)
J. Biol. Chem. 287, 13944-13951
   Abstract »    Full Text »    PDF »
Necdin Controls Foxo1 Acetylation in Hypothalamic Arcuate Neurons to Modulate the Thyroid Axis.
K. Hasegawa, T. Kawahara, K. Fujiwara, M. Shimpuku, T. Sasaki, T. Kitamura, and K. Yoshikawa (2012)
J. Neurosci. 32, 5562-5572
   Abstract »    Full Text »    PDF »
Sirtuin 1 (SIRT1) and steroid hormone receptor activity in cancer.
R. L. Moore, Y. Dai, and D. V. Faller (2012)
J. Endocrinol. 213, 37-48
   Abstract »    Full Text »    PDF »
Apo-10'-Lycopenoic Acid, a Lycopene Metabolite, Increases Sirtuin 1 mRNA and Protein Levels and Decreases Hepatic Fat Accumulation in ob/ob Mice.
J. Chung, K. Koo, F. Lian, K. Q. Hu, H. Ernst, and X.-D. Wang (2012)
J. Nutr. 142, 405-410
   Abstract »    Full Text »    PDF »
Interferon gamma (IFN-{gamma}) disrupts energy expenditure and metabolic homeostasis by suppressing SIRT1 transcription.
P. Li, Y. Zhao, X. Wu, M. Xia, M. Fang, Y. Iwasaki, J. Sha, Q. Chen, Y. Xu, and A. Shen (2012)
Nucleic Acids Res. 40, 1609-1620
   Abstract »    Full Text »    PDF »
Posttranslational modifications control FoxO3 activity during denervation.
E. Bertaggia, L. Coletto, and M. Sandri (2012)
Am J Physiol Cell Physiol 302, C587-C596
   Abstract »    Full Text »    PDF »
Phosphorylation of FOXO3a on Ser-7 by p38 Promotes Its Nuclear Localization in Response to Doxorubicin.
K.-K. Ho, V. A. McGuire, C.-Y. Koo, K. W. Muir, N. de Olano, E. Maifoshie, D. J. Kelly, U. B. McGovern, L. J. Monteiro, A. R. Gomes, et al. (2012)
J. Biol. Chem. 287, 1545-1555
   Abstract »    Full Text »    PDF »
Glucagon-Like Peptide 1 Inhibits the Sirtuin Deacetylase SirT1 to Stimulate Pancreatic {beta}-Cell Mass Expansion.
P.-O. Bastien-Dionne, L. Valenti, N. Kon, W. Gu, and J. Buteau (2011)
Diabetes 60, 3217-3222
   Abstract »    Full Text »    PDF »
NOX4 mediates activation of FoxO3a and matrix metalloproteinase-2 expression by urotensin-II.
I. Diebold, A. Petry, M. Burger, J. Hess, and A. Gorlach (2011)
Mol. Biol. Cell 22, 4424-4434
   Abstract »    Full Text »    PDF »
Protein localization in disease and therapy.
M.-C. Hung and W. Link (2011)
J. Cell Sci. 124, 3381-3392
   Abstract »    Full Text »    PDF »
Calorie Restriction: Is AMPK a Key Sensor and Effector?.
C. Canto and J. Auwerx (2011)
Physiology 26, 214-224
   Abstract »    Full Text »    PDF »
Molecular Inflammation as an Underlying Mechanism of the Aging Process and Age-related Diseases.
H. Y. Chung, E. K. Lee, Y. J. Choi, J. M. Kim, D. H. Kim, Y. Zou, C. H. Kim, J. Lee, H. S. Kim, N. D. Kim, et al. (2011)
Journal of Dental Research 90, 830-840
   Abstract »    PDF »
p300 Acetyltransferase activity differentially regulates the localization and activity of the FOXO homologues in skeletal muscle.
S. M. Senf, P. B. Sandesara, S. A. Reed, and A. R. Judge (2011)
Am J Physiol Cell Physiol 300, C1490-C1501
   Abstract »    Full Text »    PDF »
miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling.
A. Davalos, L. Goedeke, P. Smibert, C. M. Ramirez, N. P. Warrier, U. Andreo, D. Cirera-Salinas, K. Rayner, U. Suresh, J. C. Pastor-Pareja, et al. (2011)
PNAS 108, 9232-9237
   Abstract »    Full Text »    PDF »
Involvement of Oxygen-regulated Protein 150 in AMP-activated Protein Kinase-mediated Alleviation of Lipid-induced Endoplasmic Reticulum Stress.
Y. Wang, Z. Wu, D. Li, D. Wang, X. Wang, X. Feng, and M. Xia (2011)
J. Biol. Chem. 286, 11119-11131
   Abstract »    Full Text »    PDF »
Pancreatic Tumor Suppression by Benzyl Isothiocyanate Is Associated with Inhibition of PI3K/AKT/FOXO Pathway.
S. R. Boreddy, K. C. Pramanik, and S. K. Srivastava (2011)
Clin. Cancer Res. 17, 1784-1795
   Abstract »    Full Text »    PDF »
FoxO1 and SIRT1 Regulate {beta}-Cell Responses to Nitric Oxide.
K. J. Hughes, G. P. Meares, P. A. Hansen, and J. A. Corbett (2011)
J. Biol. Chem. 286, 8338-8348
   Abstract »    Full Text »    PDF »
Acetylation-Deacetylation of the Transcription Factor Nrf2 (Nuclear Factor Erythroid 2-related Factor 2) Regulates Its Transcriptional Activity and Nucleocytoplasmic Localization.
Y. Kawai, L. Garduno, M. Theodore, J. Yang, and I. J. Arinze (2011)
J. Biol. Chem. 286, 7629-7640
   Abstract »    Full Text »    PDF »
Fructose induces gluconeogenesis and lipogenesis through a SIRT1-dependent mechanism.
P. W. Caton, N. K. Nayuni, N. Q. Khan, E. G. Wood, and R. Corder (2011)
J. Endocrinol. 208, 273-283
   Abstract »    Full Text »    PDF »
Fine-tuned regulation of the PGC-1{alpha} gene transcription by different intracellular signaling pathways.
T. Hong, J. Ning, X. Yang, H.-Y. Liu, J. Han, Z. Liu, and W. Cao (2011)
Am J Physiol Endocrinol Metab 300, E500-E507
   Abstract »    Full Text »    PDF »
Feedback regulation of hepatic gluconeogenesis through modulation of SHP/Nr0b2 gene expression by Sirt1 and FoxO1.
D. Wei, R. Tao, Y. Zhang, M. F. White, and X. C. Dong (2011)
Am J Physiol Endocrinol Metab 300, E312-E320
   Abstract »    Full Text »    PDF »
SIRT1 Is a Novel Regulator of Key Pathways of Human Labor.
M. Lappas, A. Mitton, R. Lim, G. Barker, C. Riley, and M. Permezel (2011)
Biol Reprod 84, 167-178
   Abstract »    Full Text »    PDF »
Foxo3a Suppression of Urothelial Cancer Invasiveness through Twist1, Y-Box-Binding Protein 1, and E-Cadherin Regulation.
M. Shiota, Y. Song, A. Yokomizo, K. Kiyoshima, Y. Tada, H. Uchino, T. Uchiumi, J. Inokuchi, Y. Oda, K. Kuroiwa, et al. (2010)
Clin. Cancer Res. 16, 5654-5663
   Abstract »    Full Text »    PDF »
The Forkhead Transcription Factor Hcm1 Promotes Mitochondrial Biogenesis and Stress Resistance in Yeast.
M. J. Rodriguez-Colman, G. Reverter-Branchat, M. A. Sorolla, J. Tamarit, J. Ros, and E. Cabiscol (2010)
J. Biol. Chem. 285, 37092-37101
   Abstract »    Full Text »    PDF »
Survival strategies of a sterol auxotroph.
M. Carvalho, D. Schwudke, J. L. Sampaio, W. Palm, I. Riezman, G. Dey, G. D. Gupta, S. Mayor, H. Riezman, A. Shevchenko, et al. (2010)
Development 137, 3675-3685
   Abstract »    Full Text »    PDF »
Amurensin G, a Potent Natural SIRT1 Inhibitor, Rescues Doxorubicin Responsiveness via Down-Regulation of Multidrug Resistance 1.
W. K. Oh, K. B. Cho, T. T. Hien, T. H. Kim, H. S. Kim, T. T. Dao, H.-K. Han, S.-M. Kwon, S.-G. Ahn, J.-H. Yoon, et al. (2010)
Mol. Pharmacol. 78, 855-864
   Abstract »    Full Text »    PDF »
The DNA damage repair protein Ku70 interacts with FOXO4 to coordinate a conserved cellular stress response.
A. B. Brenkman, N. J. F. van den Broek, P. L. J. de Keizer, D. C. van Gent, and B. M. T. Burgering (2010)
FASEB J 24, 4271-4280
   Abstract »    Full Text »    PDF »
Sirtuins and Their Relevance to the Kidney.
C.-M. Hao and V. H. Haase (2010)
J. Am. Soc. Nephrol. 21, 1620-1627
   Abstract »    Full Text »    PDF »
Hepatic FoxO1 Ablation Exacerbates Lipid Abnormalities during Hyperglycemia.
R. A. Haeusler, S. Han, and D. Accili (2010)
J. Biol. Chem. 285, 26861-26868
   Abstract »    Full Text »    PDF »
Uncoupling of Acetylation from Phosphorylation Regulates FoxO1 Function Independent of Its Subcellular Localization.
L. Qiang, A. S. Banks, and D. Accili (2010)
J. Biol. Chem. 285, 27396-27401
   Abstract »    Full Text »    PDF »
T-Cell Protein Tyrosine Phosphatase Attenuates STAT3 and Insulin Signaling in the Liver to Regulate Gluconeogenesis.
A. Fukushima, K. Loh, S. Galic, B. Fam, B. Shields, F. Wiede, M. L. Tremblay, M. J. Watt, S. Andrikopoulos, and T. Tiganis (2010)
Diabetes 59, 1906-1914
   Abstract »    Full Text »    PDF »
Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5.
P. W Caton, N. K Nayuni, J. Kieswich, N. Q Khan, M. M Yaqoob, and R. Corder (2010)
J. Endocrinol. 205, 97-106
   Abstract »    Full Text »    PDF »
PPAR control: it's SIRTainly as easy as PGC.
M. C Sugden, P. W Caton, and M. J Holness (2010)
J. Endocrinol. 204, 93-104
   Abstract »    Full Text »    PDF »
SIRT1 Genetic Variation Is Related to BMI and Risk of Obesity.
M.C. Zillikens, J. B.J. van Meurs, F. Rivadeneira, N. Amin, A. Hofman, B. A. Oostra, E. J.G. Sijbrands, J. C.M. Witteman, H. A.P. Pols, C. M. van Duijn, et al. (2009)
Diabetes 58, 2828-2834
   Abstract »    Full Text »    PDF »
FoxO1 and HNF-4 Are Involved in Regulation of Hepatic Glucokinase Gene Expression by Resveratrol.
G. K. Ganjam, E. Y. Dimova, T. G. Unterman, and T. Kietzmann (2009)
J. Biol. Chem. 284, 30783-30797
   Abstract »    Full Text »    PDF »
Activation of SIRT1 by Resveratrol Represses Transcription of the Gene for the Cytosolic Form of Phosphoenolpyruvate Carboxykinase (GTP) by Deacetylating Hepatic Nuclear Factor 4{alpha}.
J. Yang, X. Kong, M. E. S. Martins-Santos, G. Aleman, E. Chaco, G. E. Liu, S.-Y. Wu, D. Samols, P. Hakimi, C.-M. Chiang, et al. (2009)
J. Biol. Chem. 284, 27042-27053
   Abstract »    Full Text »    PDF »
Adiponectin: A Key Adipokine in Alcoholic Fatty Liver.
M. You and C. Q. Rogers (2009)
Experimental Biology and Medicine 234, 850-859
   Abstract »    Full Text »    PDF »
SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats.
D. M. Erion, S. Yonemitsu, Y. Nie, Y. Nagai, M. P. Gillum, J. J. Hsiao, T. Iwasaki, R. Stark, D. Weismann, X. X. Yu, et al. (2009)
PNAS 106, 11288-11293
   Abstract »    Full Text »    PDF »
MDM2 Acts Downstream of p53 as an E3 Ligase to Promote FOXO Ubiquitination and Degradation.
W. Fu, Q. Ma, L. Chen, P. Li, M. Zhang, S. Ramamoorthy, Z. Nawaz, T. Shimojima, H. Wang, Y. Yang, et al. (2009)
J. Biol. Chem. 284, 13987-14000
   Abstract »    Full Text »    PDF »
Role of Sirtuin Histone Deacetylase SIRT1 in Prostate Cancer: A TARGET FOR PROSTATE CANCER MANAGEMENT VIA ITS INHIBITION?.
B. Jung-Hynes, M. Nihal, W. Zhong, and N. Ahmad (2009)
J. Biol. Chem. 284, 3823-3832
   Abstract »    Full Text »    PDF »
Monitoring FoxO1 Localization in Chemically Identified Neurons.
M. Fukuda, J. E. Jones, D. Olson, J. Hill, C. E. Lee, L. Gautron, M. Choi, J. M. Zigman, B. B. Lowell, and J. K. Elmquist (2008)
J. Neurosci. 28, 13640-13648
   Abstract »    Full Text »    PDF »
Forkhead box-O transcription factor: critical conductors of cancer's fate.
C. Weidinger, K. Krause, A. Klagge, S. Karger, and D. Fuhrer (2008)
Endocr. Relat. Cancer 15, 917-929
   Abstract »    Full Text »    PDF »
Inhibition of Gluconeogenesis in Primary Hepatocytes by Stromal Cell-derived Factor-1 (SDF-1) through a c-Src/Akt-dependent Signaling Pathway.
H.-Y. Liu, G.-B. Wen, J. Han, T. Hong, D. Zhuo, Z. Liu, and W. Cao (2008)
J. Biol. Chem. 283, 30642-30649
   Abstract »    Full Text »    PDF »
The Forkhead Transcription Factor FOXO3a Increases Phosphoinositide-3 Kinase/Akt Activity in Drug-Resistant Leukemic Cells through Induction of PIK3CA Expression.
R. C.-Y. Hui, A. R. Gomes, D. Constantinidou, J. R. Costa, C. T. Karadedou, S. Fernandez de Mattos, M. P. Wymann, J. J. Brosens, A. Schulze, and E. W.-F. Lam (2008)
Mol. Cell. Biol. 28, 5886-5898
   Abstract »    Full Text »    PDF »
Resveratrol alleviates alcoholic fatty liver in mice.
J. M. Ajmo, X. Liang, C. Q. Rogers, B. Pennock, and M. You (2008)
Am J Physiol Gastrointest Liver Physiol 295, G833-G842
   Abstract »    Full Text »    PDF »
Pck1 Gene Silencing in the Liver Improves Glycemia Control, Insulin Sensitivity, and Dyslipidemia in db/db Mice.
A. G. Gomez-Valades, A. Mendez-Lucas, A. Vidal-Alabro, F. X. Blasco, M. Chillon, R. Bartrons, J. Bermudez, and J. C. Perales (2008)
Diabetes 57, 2199-2210
   Abstract »    Full Text »    PDF »
Suppression of Hepatic Glucose Production by Human Neutrophil {alpha}-Defensins through a Signaling Pathway Distinct from Insulin.
H.-Y. Liu, Q. F. Collins, F. Moukdar, D. Zhuo, J. Han, T. Hong, S. Collins, and W. Cao (2008)
J. Biol. Chem. 283, 12056-12063
   Abstract »    Full Text »    PDF »
Increased Expression and Activity of the Transcription Factor FOXO1 in Nonalcoholic Steatohepatitis.
L. Valenti, R. Rametta, P. Dongiovanni, M. Maggioni, A. Ludovica Fracanzani, M. Zappa, E. Lattuada, G. Roviaro, and S. Fargion (2008)
Diabetes 57, 1355-1362
   Abstract »    Full Text »    PDF »
Pre-B cell colony-enhancing factor (PBEF)/visfatin: a novel mediator of innate immunity.
T. Luk, Z. Malam, and J. C. Marshall (2008)
J. Leukoc. Biol. 83, 804-816
   Abstract »    Full Text »    PDF »
Signaling networks in aging.
E. L. Greer and A. Brunet (2008)
J. Cell Sci. 121, 407-412
   Full Text »    PDF »
Forkhead Transcription Factors Coordinate Expression of Myocardial KATP Channel Subunits and Energy Metabolism.
P. Philip-Couderc, N. I. Tavares, A. Roatti, R. Lerch, C. Montessuit, and A. J. Baertschi (2008)
Circ. Res. 102, e20-e35
   Abstract »    Full Text »    PDF »
FoxO transcription factors activate Akt and attenuate insulin signaling in heart by inhibiting protein phosphatases.
Y. G. Ni, N. Wang, D. J. Cao, N. Sachan, D. J. Morris, R. D. Gerard, M. Kuro-o, B. A. Rothermel, and J. A. Hill (2007)
PNAS 104, 20517-20522
   Abstract »    Full Text »    PDF »
SIRT1 controls endothelial angiogenic functions during vascular growth.
M. Potente, L. Ghaeni, D. Baldessari, R. Mostoslavsky, L. Rossig, F. Dequiedt, J. Haendeler, M. Mione, E. Dejana, F. W. Alt, et al. (2007)
Genes & Dev. 21, 2644-2658
   Abstract »    Full Text »    PDF »
Dynamic FoxO transcription factors.
H. Huang and D. J. Tindall (2007)
J. Cell Sci. 120, 2479-2487
   Abstract »    Full Text »    PDF »
Role of FoxO1 in FFA-induced oxidative stress in adipocytes.
A. R. Subauste and C. F. Burant (2007)
Am J Physiol Endocrinol Metab 293, E159-E164
   Abstract »    Full Text »    PDF »
High-resolution dynamics of the transcriptional response to nutrition in Drosophila: a key role for dFOXO.
B. Gershman, O. Puig, L. Hang, R. M. Peitzsch, M. Tatar, and R. S. Garofalo (2007)
Physiol Genomics 29, 24-34
   Abstract »    Full Text »    PDF »
SIRT1 Regulates Adiponectin Gene Expression through Foxo1-C/Enhancer-binding Protein {alpha} Transcriptional Complex.
L. Qiao and J. Shao (2006)
J. Biol. Chem. 281, 39915-39924
   Abstract »    Full Text »    PDF »
Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction..
M. C. Haigis and L. P. Guarente (2006)
Genes & Dev. 20, 2913-2921
   Abstract »    Full Text »    PDF »
Transcription Factor FoxO1 Mediates Glucagon-Like Peptide-1 Effects on Pancreatic {beta}-Cell Mass..
J. Buteau, M. L. Spatz, and D. Accili (2006)
Diabetes 55, 1190-1196
   Abstract »    Full Text »    PDF »
The Forkhead Transcription Factor Foxo1 Bridges the JNK Pathway and the Transcription Factor PDX-1 through Its Intracellular Translocation.
D. Kawamori, H. Kaneto, Y. Nakatani, T.-a. Matsuoka, M. Matsuhisa, M. Hori, and Y. Yamasaki (2006)
J. Biol. Chem. 281, 1091-1098
   Abstract »    Full Text »    PDF »
Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation.
H. Matsuzaki, H. Daitoku, M. Hatta, H. Aoyama, K. Yoshimochi, and A. Fukamizu (2005)
PNAS 102, 11278-11283
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882