Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Biol. Chem. 280 (35): 31294-31302

© 2005 by The American Society for Biochemistry and Molecular Biology, Inc.

Interplay of Ca2+ and cAMP Signaling in the Insulin-secreting MIN6 {beta}-Cell Line*

Luis R. Landa, Jr.{ddagger}§, Mark Harbeck{ddagger}§, Kelly Kaihara{ddagger}, Oleg Chepurny¶, Kajorn Kitiphongspattana{ddagger}, Oliver Graf{ddagger}, Viacheslav O. Nikolaev||, Martin J. Lohse||, George G. Holz¶, , and Michael W. Roe{ddagger}**

{ddagger}Department of Medicine, The University of Chicago, Chicago, Illinois 60637, the Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016, and the ||Institute of Pharmacology and Toxicology, University of Würzburg, D-97078 Würzburg, Germany

Abstract: Ca2+ and cAMP are important second messengers that regulate multiple cellular processes. Although previous studies have suggested direct interactions between Ca2+ and cAMP signaling pathways, the underlying mechanisms remain unresolved. In particular, direct evidence for Ca2+-regulated cAMP production in living cells is incomplete. Genetically encoded fluorescence resonance energy transfer-based biosensors have made possible real-time imaging of spatial and temporal gradients of intracellular cAMP concentration in single living cells. Here, we used confocal microscopy, fluorescence resonance energy transfer, and insulin-secreting MIN6 cells expressing Epac1-camps, a biosynthetic unimolecular cAMP indicator, to better understand the role of intracellular Ca2+ in cAMP production. We report that depolarization with high external K+, tolbutamide, or glucose caused a rapid increase in cAMP that was dependent on extracellular Ca2+ and inhibited by nitrendipine, a Ca2+ channel blocker, or 2',5'-dideoxyadenosine, a P-site antagonist of transmembrane adenylate cyclases. Stimulation of MIN6 cells with glucose in the presence of tetraethylammonium chloride generated concomitant Ca2+ and cAMP oscillations that were abolished in the absence of extracellular Ca2+ and blocked by 2',5'-dideoxyadenosine or 3-isobutyl-1-methylxanthine, an inhibitor of phosphodiesterase. Simultaneous measurements of Ca2+ and cAMP concentrations with Fura-2 and Epac1-camps, respectively, revealed a close temporal and causal interrelationship between the increases in cytoplasmic Ca2+ and cAMP levels following membrane depolarization. These findings indicate highly coordinated interplay between Ca2+ and cAMP signaling in electrically excitable endocrine cells and suggest that Ca2+-dependent cAMP oscillations are derived from an increase in adenylate cyclase activity and periodic activation and inactivation of cAMP-hydrolyzing phosphodiesterase.


Received for publication May 24, 2005. Revision received June 24, 2005.

* This work was supported by research grants from the American Diabetes Association (to G. G. H. and M. W. R.) and by National Institutes of Health Grant DK45817 (to G. G. H.) and Grants DK63493, DK64162, and DK68822 (to M. W. R.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The on-line version of this article (available at http://www.jbc.org) contains supplemental Fig. S1 and Table 1.

§ Both authors contributed equally to this work.

** To whom correspondence should be addressed: Dept. of Medicine MC-1027, The University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637. Tel.: 773-702-4965; Fax: 773-834-0486; E-mail: mroe{at}medicine.bsd.uchicago.edu.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
CO2/HCOFormula- and Calcium-regulated Soluble Adenylyl Cyclase as a Physiological ATP Sensor.
J. H. Zippin, Y. Chen, S. G. Straub, K. C. Hess, A. Diaz, D. Lee, P. Tso, G. G. Holz, G. W. G. Sharp, L. R. Levin, et al. (2013)
J. Biol. Chem. 288, 33283-33291
   Abstract »    Full Text »    PDF »
Serum- and Glucocorticoid-induced Protein Kinase 1 (SGK1) Is Regulated by Store-operated Ca2+ Entry and Mediates Cytoprotection against Necrotic Cell Death.
D. R. Brickley, A. S. Agyeman, R. F. Kopp, B. A. Hall, M. C. Harbeck, L. Belova, P. A. Volden, W. Wu, M. W. Roe, and S. D. Conzen (2013)
J. Biol. Chem. 288, 32708-32719
   Abstract »    Full Text »    PDF »
Striatal neurones have a specific ability to respond to phasic dopamine release.
L. R. V. Castro, M. Brito, E. Guiot, M. Polito, C. W. Korn, D. Herve, J.-A. Girault, D. Paupardin-Tritsch, and P. Vincent (2013)
J. Physiol. 591, 3197-3214
   Abstract »    Full Text »    PDF »
Role of phosphodiesterases in the shaping of sub-plasma-membrane cAMP oscillations and pulsatile insulin secretion.
G. Tian, J. Sagetorp, Y. Xu, H. Shuai, E. Degerman, and A. Tengholm (2012)
J. Cell Sci. 125, 5084-5095
   Abstract »    Full Text »    PDF »
Real-time hyperspectral fluorescence imaging of pancreatic {beta}-cell dynamics with the image mapping spectrometer.
A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk (2012)
J. Cell Sci. 125, 4833-4840
   Abstract »    Full Text »    PDF »
The A-kinase Anchoring Protein Yotiao Facilitates Complex Formation between Adenylyl Cyclase Type 9 and the IKs Potassium Channel in Heart.
Y. Li, L. Chen, R. S. Kass, and C. W. Dessauer (2012)
J. Biol. Chem. 287, 29815-29824
   Abstract »    Full Text »    PDF »
Fluorescence/Bioluminescence Resonance Energy Transfer Techniques to Study G-Protein-Coupled Receptor Activation and Signaling.
M. J. Lohse, S. Nuber, and C. Hoffmann (2012)
Pharmacol. Rev. 64, 299-336
   Abstract »    Full Text »    PDF »
SUMO downregulates GLP-1-stimulated cAMP generation and insulin secretion.
S. Rajan, J. Torres, M. S. Thompson, and L. H. Philipson (2012)
Am J Physiol Endocrinol Metab 302, E714-E723
   Abstract »    Full Text »    PDF »
cAMP-secretion coupling is impaired in diabetic GK/Par rat {beta}-cells: a defect counteracted by GLP-1.
M. Dolz, J. Movassat, D. Bailbe, H. Le Stunff, M.-H. Giroix, M. Fradet, M. Kergoat, and B. Portha (2011)
Am J Physiol Endocrinol Metab 301, E797-E806
   Abstract »    Full Text »    PDF »
Systems analysis of GLP-1 receptor signaling in pancreatic {beta}-cells.
Y. Takeda, A. Amano, A. Noma, Y. Nakamura, S. Fujimoto, and N. Inagaki (2011)
Am J Physiol Cell Physiol 301, C792-C803
   Abstract »    Full Text »    PDF »
How uniform is cAMP signaling? Focus on "Systems analysis of GLP-1 receptor signaling in pancreatic {beta}-cells".
R. D. Harvey (2011)
Am J Physiol Cell Physiol 301, C775-C776
   Full Text »    PDF »
Glucose- and Hormone-Induced cAMP Oscillations in {alpha}- and {beta}-Cells Within Intact Pancreatic Islets.
G. Tian, S. Sandler, E. Gylfe, and A. Tengholm (2011)
Diabetes 60, 1535-1543
   Abstract »    Full Text »    PDF »
Regulation by Ca2+-Signaling Pathways of Adenylyl Cyclases.
M. L. Halls and D. M. F. Cooper (2011)
Cold Spring Harb Perspect Biol 3, a004143
   Abstract »    Full Text »    PDF »
Bursting and calcium oscillations in pancreatic {beta}-cells: specific pacemakers for specific mechanisms.
L. E. Fridlyand, N. Tamarina, and L. H. Philipson (2010)
Am J Physiol Endocrinol Metab 299, E517-E532
   Abstract »    Full Text »    PDF »
cAMP Mediators of Pulsatile Insulin Secretion from Glucose-stimulated Single {beta}-Cells.
O. Idevall-Hagren, S. Barg, E. Gylfe, and A. Tengholm (2010)
J. Biol. Chem. 285, 23007-23018
   Abstract »    Full Text »    PDF »
AKAP79/150 Interacts with AC8 and Regulates Ca2+-dependent cAMP Synthesis in Pancreatic and Neuronal Systems.
D. Willoughby, N. Masada, S. Wachten, M. Pagano, M. L. Halls, K. L. Everett, A. Ciruela, and D. M. F. Cooper (2010)
J. Biol. Chem. 285, 20328-20342
   Abstract »    Full Text »    PDF »
Type 4 Phosphodiesterase Plays Different Integrating Roles in Different Cellular Domains in Pyramidal Cortical Neurons.
L. R. V. Castro, N. Gervasi, E. Guiot, L. Cavellini, V. O. Nikolaev, D. Paupardin-Tritsch, and P. Vincent (2010)
J. Neurosci. 30, 6143-6151
   Abstract »    Full Text »    PDF »
PKA-dependent potentiation of glucose-stimulated insulin secretion by Epac activator 8-pCPT-2'-O-Me-cAMP-AM in human islets of Langerhans.
O. G. Chepurny, G. G. Kelley, I. Dzhura, C. A. Leech, M. W. Roe, E. Dzhura, X. Li, F. Schwede, H.-G. Genieser, and G. G. Holz (2010)
Am J Physiol Endocrinol Metab 298, E622-E633
   Abstract »    Full Text »    PDF »
Gq-mediated Ca2+ signals inhibit adenylyl cyclases 5/6 in vascular smooth muscle cells.
K. von Hayn, R. C. Werthmann, V. O. Nikolaev, L. G. Hommers, M. J. Lohse, and M. Bunemann (2010)
Am J Physiol Cell Physiol 298, C324-C332
   Abstract »    Full Text »    PDF »
Direct demonstration of discrete Ca2+ microdomains associated with different isoforms of adenylyl cyclase.
D. Willoughby, S. Wachten, N. Masada, and D. M. F. Cooper (2010)
J. Cell Sci. 123, 107-117
   Abstract »    Full Text »    PDF »
Epac2: A Molecular Target for Sulfonylurea-Induced Insulin Release.
S. A. Hinke (2009)
Science Signaling 2, pe54
   Abstract »    Full Text »    PDF »
Truncation of SNAP-25 reduces the stimulatory action of cAMP on rapid exocytosis in insulin-secreting cells.
J. Vikman, H. Svensson, Y.-C. Huang, Y. Kang, S. A. Andersson, H. Y. Gaisano, and L. Eliasson (2009)
Am J Physiol Endocrinol Metab 297, E452-E461
   Abstract »    Full Text »    PDF »
The cAMP Sensor Epac2 Is a Direct Target of Antidiabetic Sulfonylurea Drugs.
C.-L. Zhang, M. Katoh, T. Shibasaki, K. Minami, Y. Sunaga, H. Takahashi, N. Yokoi, M. Iwasaki, T. Miki, and S. Seino (2009)
Science 325, 607-610
   Abstract »    Full Text »    PDF »
Enhanced Rap1 Activation and Insulin Secretagogue Properties of an Acetoxymethyl Ester of an Epac-selective Cyclic AMP Analog in Rat INS-1 Cells: STUDIES WITH 8-pCPT-2'-O-Me-cAMP-AM.
O. G. Chepurny, C. A. Leech, G. G. Kelley, I. Dzhura, E. Dzhura, X. Li, M. J. Rindler, F. Schwede, H. G. Genieser, and G. G. Holz (2009)
J. Biol. Chem. 284, 10728-10736
   Abstract »    Full Text »    PDF »
Capacitative Ca2+ Entry via Orai1 and Stromal Interacting Molecule 1 (STIM1) Regulates Adenylyl Cyclase Type 8.
A. C. L. Martin, D. Willoughby, A. Ciruela, L.-J. Ayling, M. Pagano, S. Wachten, A. Tengholm, and D. M. F. Cooper (2009)
Mol. Pharmacol. 75, 830-842
   Abstract »    Full Text »    PDF »
Distinct Mechanisms of Regulation by Ca2+/Calmodulin of Type 1 and 8 Adenylyl Cyclases Support Their Different Physiological Roles.
N. Masada, A. Ciruela, D. A. MacDougall, and D. M. F. Cooper (2009)
J. Biol. Chem. 284, 4451-4463
   Abstract »    Full Text »    PDF »
Glucose and GLP-1 Stimulate cAMP Production via Distinct Adenylyl Cyclases in INS-1E Insulinoma Cells.
L. S. Ramos, J. H. Zippin, M. Kamenetsky, J. Buck, and L. R. Levin (2008)
J. Gen. Physiol. 132, 329-338
   Abstract »    Full Text »    PDF »
Synchronizing Ca2+ and cAMP oscillations in pancreatic {beta}-cells: a role for glucose metabolism and GLP-1 receptors?Focus on "Regulation of cAMP dynamics by Ca2+ and G protein-coupled receptors in the pancreatic {beta}-cell: a computational approach".
G. G. Holz, E. Heart, and C. A. Leech (2008)
Am J Physiol Cell Physiol 294, C4-C6
   Full Text »    PDF »
Regulation of cAMP dynamics by Ca2+ and G protein-coupled receptors in the pancreatic -cell: a computational approach.
L. E. Fridlyand, M. C. Harbeck, M. W. Roe, and L. H. Philipson (2007)
Am J Physiol Cell Physiol 293, C1924-C1933
   Abstract »    Full Text »    PDF »
Organization and Ca2+ Regulation of Adenylyl Cyclases in cAMP Microdomains.
D. Willoughby and D. M. F. Cooper (2007)
Physiol Rev 87, 965-1010
   Abstract »    Full Text »    PDF »
Cell physiology of cAMP sensor Epac.
G. G. Holz, G. Kang, M. Harbeck, M. W. Roe, and O. G. Chepurny (2006)
J. Physiol. 577, 5-15
   Abstract »    Full Text »    PDF »
Simultaneous Optical Measurements of Cytosolic Ca2+ and cAMP in Single Cells.
M. C. Harbeck, O. Chepurny, V. O. Nikolaev, M. J. Lohse, G. G. Holz, and M. W. Roe (2006)
Sci. STKE 2006, pl6
   Abstract »    Full Text »    PDF »
cAMP sensor Epac as a determinant of ATP-sensitive potassium channel activity in human pancreatic {beta} cells and rat INS-1 cells.
G. Kang, O. G. Chepurny, B. Malester, M. J. Rindler, H. Rehmann, J. L. Bos, F. Schwede, W. A. Coetzee, and G. G. Holz (2006)
J. Physiol. 573, 595-609
   Abstract »    Full Text »    PDF »
Specific Regulation of IRS-2 Expression by Glucose in Rat Primary Pancreatic Islet beta-Cells.
M. K. Lingohr, I. Briaud, L. M. Dickson, J. F. McCuaig, C. Alarcon, B. L. Wicksteed, and C. J. Rhodes (2006)
J. Biol. Chem. 281, 15884-15892
   Abstract »    Full Text »    PDF »
Second Messenger Pas de Deux: The Coordinated Dance Between Calcium and cAMP.
L. N. Borodinsky and N. C. Spitzer (2006)
Sci. STKE 2006, pe22
   Abstract »    Full Text »    PDF »
Monitoring of cAMP Synthesis and Degradation in Living Cells.
V. O. Nikolaev and M. J. Lohse (2006)
Physiology 21, 86-92
   Abstract »    Full Text »    PDF »
Ca2+ stimulation of adenylyl cyclase generates dynamic oscillations in cyclic AMP.
D. Willoughby and D. M. F. Cooper (2006)
J. Cell Sci. 119, 828-836
   Abstract »    Full Text »    PDF »
Termination of cAMP signals by Ca2+ and G{alpha}i via extracellular Ca2+ sensors: a link to intracellular Ca2+ oscillations.
A. Gerbino, W. C. Ruder, S. Curci, T. Pozzan, M. Zaccolo, and A. M. Hofer (2005)
J. Cell Biol. 171, 303-312
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882