Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Biol. Chem. 281 (17): 11815-11818

© 2006 by The American Society for Biochemistry and Molecular Biology, Inc.

Similar Protein Phosphatases Control Starch Metabolism in Plants and Glycogen Metabolism in Mammals*

Formula

Totte Niittylä{ddagger}12, Sylviane Comparot-Moss{ddagger}1, Wei-Ling Lue§, Gaëlle Messerli, Martine Trevisan||3, Michael D. J. Seymour**, John A. Gatehouse**, Dorthe Villadsen{ddagger}{ddagger}, Steven M. Smith§§, Jychian Chen§, Samuel C. Zeeman4, , and Alison M. Smith{ddagger}

{ddagger}Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom, §Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, Institute of Plant Sciences, ETH Zurich, CH-8092 Zurich, Switzerland, ||Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland, **School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom, {ddagger}{ddagger}Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JH, United Kingdom, and §§Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley WA 6009, Australia

Abstract: We report that protein phosphorylation is involved in the control of starch metabolism in Arabidopsis leaves at night. sex4 (starch excess 4) mutants, which have strongly reduced rates of starch metabolism, lack a protein predicted to be a dual specificity protein phosphatase. We have shown that this protein is chloroplastic and can bind to glucans and have presented evidence that it acts to regulate the initial steps of starch degradation at the granule surface. Remarkably, the most closely related protein to SEX4 outside the plant kingdom is laforin, a glucan-binding protein phosphatase required for the metabolism of the mammalian storage carbohydrate glycogen and implicated in a severe form of epilepsy (Lafora disease) in humans.


Received for publication January 18, 2006. Revision received February 27, 2006.

* This work was supported by funding from the Biotechnology and Biological Sciences Research Council of the United Kingdom (to A. M. S. and J. A. G.), from the Swiss National Science Foundation (National Centre of Competence in Research-Plant Survival) and the Roche Research Foundation (to S. C. Z.), and from the National Science Council, Taiwan (to J. C.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.


Formula

The on-line version of this article (available at http://www.jbc.org) contains supplemental material.

1 These authors contributed equally to this work.

2 Present address: Carnegie Institution, Stanford, CA 94305-1297.

3 Present address: Ctr. for Integrative Genomics, University of Lausanne, CH-1015, Lausanne, Switzerland.

4 To whom correspondence should be addressed: Institute of Plant Sciences, ETH Zurich, CH-8092 Zurich, Switzerland. Tel.: 41-44-632-8275; Fax: 41-44-632-1044; E-mail szeeman{at}ethz.ch.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Quantitative analysis of regulatory flexibility under changing environmental conditions.
K. D. Edwards, O. E. Akman, K. Knox, P. J. Lumsden, A. W. Thomson, P. E. Brown, A. Pokhilko, L. Kozma-Bognar, F. Nagy, D. A. Rand, et al. (2014)
Mol Syst Biol 6, 424
   Abstract »    Full Text »    PDF »
Feedback Inhibition of Starch Degradation in Arabidopsis Leaves Mediated by Trehalose 6-Phosphate.
M. C. M. Martins, M. Hejazi, J. Fettke, M. Steup, R. Feil, U. Krause, S. Arrivault, D. Vosloh, C. M. Figueroa, A. Ivakov, et al. (2013)
Plant Physiology 163, 1142-1163
   Abstract »    Full Text »    PDF »
Structure of the Arabidopsis Glucan Phosphatase LIKE SEX FOUR2 Reveals a Unique Mechanism for Starch Dephosphorylation.
D. A. Meekins, H.-F. Guo, S. Husodo, B. C. Paasch, T. M. Bridges, D. Santelia, O. Kotting, C. W. Vander Kooi, and M. S. Gentry (2013)
PLANT CELL 25, 2302-2314
   Abstract »    Full Text »    PDF »
Autophagy Contributes to Leaf Starch Degradation.
Y. Wang, B. Yu, J. Zhao, J. Guo, Y. Li, S. Han, L. Huang, Y. Du, Y. Hong, D. Tang, et al. (2013)
PLANT CELL 25, 1383-1399
   Abstract »    Full Text »    PDF »
Modular evolution of phosphorylation-based signalling systems.
J. Jin and T. Pawson (2012)
Phil Trans R Soc B 367, 2540-2555
   Abstract »    Full Text »    PDF »
The Phosphoglucan Phosphatase Like Sex Four2 Dephosphorylates Starch at the C3-Position in Arabidopsis.
D. Santelia, O. Kotting, D. Seung, M. Schubert, M. Thalmann, S. Bischof, D. A. Meekins, A. Lutz, N. Patron, M. S. Gentry, et al. (2011)
PLANT CELL 23, 4096-4111
   Abstract »    Full Text »    PDF »
Starch-Branching Enzyme IIa Is Required for Proper Diurnal Cycling of Starch in Leaves of Maize.
M. D. Yandeau-Nelson, L. Laurens, Z. Shi, H. Xia, A. M. Smith, and M. J. Guiltinan (2011)
Plant Physiology 156, 479-490
   Abstract »    Full Text »    PDF »
Structural basis for the glucan phosphatase activity of Starch Excess4.
C. W. Vander Kooi, A. O. Taylor, R. M. Pace, D. A. Meekins, H.-F. Guo, Y. Kim, and M. S. Gentry (2010)
PNAS 107, 15379-15384
   Abstract »    Full Text »    PDF »
Circadian control of carbohydrate availability for growth in Arabidopsis plants at night.
A. Graf, A. Schlereth, M. Stitt, and A. M. Smith (2010)
PNAS 107, 9458-9463
   Abstract »    Full Text »    PDF »
A Putative Phosphatase, LSF1, Is Required for Normal Starch Turnover in Arabidopsis Leaves.
S. Comparot-Moss, O. Kotting, M. Stettler, C. Edner, A. Graf, S. E. Weise, S. Streb, W.-L. Lue, D. MacLean, S. Mahlow, et al. (2010)
Plant Physiology 152, 685-697
   Abstract »    Full Text »    PDF »
Eukaryotic starch degradation: integration of plastidial and cytosolic pathways.
J. Fettke, M. Hejazi, J. Smirnova, E. Hochel, M. Stage, and M. Steup (2009)
J. Exp. Bot. 60, 2907-2922
   Abstract »    Full Text »    PDF »
SnRK1 Isoforms AKIN10 and AKIN11 Are Differentially Regulated in Arabidopsis Plants under Phosphate Starvation.
S. Fragoso, L. Espindola, J. Paez-Valencia, A. Gamboa, Y. Camacho, E. Martinez-Barajas, and P. Coello (2009)
Plant Physiology 149, 1906-1916
   Abstract »    Full Text »    PDF »
STARCH-EXCESS4 Is a Laforin-Like Phosphoglucan Phosphatase Required for Starch Degradation in Arabidopsis thaliana.
O. Kotting, D. Santelia, C. Edner, S. Eicke, T. Marthaler, M. S. Gentry, S. Comparot-Moss, J. Chen, A. M. Smith, M. Steup, et al. (2009)
PLANT CELL 21, 334-346
   Abstract »    Full Text »    PDF »
Early Gene Duplication Within Chloroplastida and Its Correspondence With Relocation of Starch Metabolism to Chloroplasts.
P. Deschamps, H. Moreau, A. Z. Worden, D. Dauvillee, and S. G. Ball (2008)
Genetics 178, 2373-2387
   Abstract »    Full Text »    PDF »
New Connections across Pathways and Cellular Processes: Industrialized Mutant Screening Reveals Novel Associations between Diverse Phenotypes in Arabidopsis.
Y. Lu, L. J. Savage, I. Ajjawi, K. M. Imre, D. W. Yoder, C. Benning, D. DellaPenna, J. B. Ohlrogge, K. W. Osteryoung, A. P. Weber, et al. (2008)
Plant Physiology 146, 1482-1500
   Abstract »    Full Text »    PDF »
Malin Decreases Glycogen Accumulation by Promoting the Degradation of Protein Targeting to Glycogen (PTG).
C. A. Worby, M. S. Gentry, and J. E. Dixon (2008)
J. Biol. Chem. 283, 4069-4076
   Abstract »    Full Text »    PDF »
Specificity of RCN1-Mediated Protein Phosphatase 2A Regulation in Meristem Organization and Stress Response in Roots.
J. J. Blakeslee, H.-W. Zhou, J. T. Heath, K. R. Skottke, J. A. R. Barrios, S.-Y. Liu, and A. DeLong (2008)
Plant Physiology 146, 539-553
   Abstract »    Full Text »    PDF »
Glucan, Water Dikinase Activity Stimulates Breakdown of Starch Granules by Plastidial beta-Amylases.
C. Edner, J. Li, T. Albrecht, S. Mahlow, M. Hejazi, H. Hussain, F. Kaplan, C. Guy, S. M. Smith, M. Steup, et al. (2007)
Plant Physiology 145, 17-28
   Abstract »    Full Text »    PDF »
The phosphatase laforin crosses evolutionary boundaries and links carbohydrate metabolism to neuronal disease.
M. S. Gentry, R. H. Dowen III, C. A. Worby, S. Mattoo, J. R. Ecker, and J. E. Dixon (2007)
J. Cell Biol. 178, 477-488
   Abstract »    Full Text »    PDF »
Lafora disease proteins malin and laforin are recruited to aggresomes in response to proteasomal impairment.
S. Mittal, D. Dubey, K. Yamakawa, and S. Ganesh (2007)
Hum. Mol. Genet. 16, 753-762
   Abstract »    Full Text »    PDF »
Rapid Classification of Phenotypic Mutants of Arabidopsis via Metabolite Fingerprinting.
G. Messerli, V. Partovi Nia, M. Trevisan, A. Kolbe, N. Schauer, P. Geigenberger, J. Chen, A. C. Davison, A. R. Fernie, and S. C. Zeeman (2007)
Plant Physiology 143, 1484-1492
   Abstract »    Full Text »    PDF »
Regulation of Starch Metabolism in Arabidopsis Leaves.
A. K. Grennan (2006)
Plant Physiology 142, 1343-1345
   Full Text »    PDF »
AKINbeta{gamma} Contributes to SnRK1 Heterotrimeric Complexes and Interacts with Two Proteins Implicated in Plant Pathogen Resistance through Its KIS/GBD Sequence.
L. Gissot, C. Polge, M. Jossier, T. Girin, J.-P. Bouly, M. Kreis, and M. Thomas (2006)
Plant Physiology 142, 931-944
   Abstract »    Full Text »    PDF »
Laforin, a Dual Specificity Phosphatase That Dephosphorylates Complex Carbohydrates.
C. A. Worby, M. S. Gentry, and J. E. Dixon (2006)
J. Biol. Chem. 281, 30412-30418
   Abstract »    Full Text »    PDF »
A redox-regulated chloroplast protein phosphatase binds to starch diurnally and functions in its accumulation.
L. N. Sokolov, J. R. Dominguez-Solis, A.-L. Allary, B. B. Buchanan, and S. Luan (2006)
PNAS 103, 9732-9737
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882