Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Biol. Chem. 281 (25): 17253-17258

© 2006 by The American Society for Biochemistry and Molecular Biology, Inc.

Soluble Adenylyl Cyclase Mediates Nerve Growth Factor-induced Activation of Rap1*

Alexander M. Stessin{ddagger}§, Jonathan H. Zippin{ddagger}§, Margarita Kamenetsky{ddagger}, Kenneth C. Hess{ddagger}, Jochen Buck{ddagger}1, , and Lonny R. Levin{ddagger}

{ddagger}Department of Pharmacology, and §Tri-institutional M.D./Ph.D. Program, Weill Medical College of Cornell University, New York, New York 10021

Abstract: Nerve growth factor (NGF) and the ubiquitous second messenger cyclic AMP (cAMP) are both implicated in neuronal differentiation. Multiple studies indicate that NGF signals to at least a subset of its targets via cAMP, but the link between NGF and cAMP has remained elusive. Here, we have described the use of small molecule inhibitors to differentiate between the two known sources of cAMP in mammalian cells, bicarbonate- and calcium-responsive soluble adenylyl cyclase (sAC) and G protein-regulated transmembrane adenylyl cyclases. These inhibitors, along with sAC-specific small interfering RNA, reveal that sAC is uniquely responsible for the NGF-elicited rise in cAMP and is essential for the NGF-induced activation of the small G protein Rap1 in PC12 cells. In contrast and as expected, transmembrane adenylyl cyclase-generated cAMP is responsible for Rap1 activation by the G protein-coupled receptor ligand PACAP (pituitary adenylyl cyclase-activating peptide). These results identify sAC as a mediator of NGF signaling and reveal the existence of distinct pathways leading to cAMP-dependent signal transduction.

Received for publication April 12, 2006.

* This work was supported by Medical Scientist Training Program funding (to A. M. S. and J. H. Z.), National Institutes of Health Grants HD42060 and GM62328, the Ellison Medical Foundation (to J. B.), National Institutes of Health Grants HD38722 and AI64842, American Diabetes Association, and the Hirschl Weil-Caulier Trust (to L. R. L.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 To whom correspondence should be addressed: Dept. of Pharmacology, Weill Medical College of Cornell University, 1300 York Ave., New York, NY 10021. Tel.: 212-746-6247; Fax: 212-746-6241; E-mail: jobuck{at}

Separate Cyclic AMP Sensors for Neuritogenesis, Growth Arrest, and Survival of Neuroendocrine Cells.
A. C. Emery, M. V. Eiden, and L. E. Eiden (2014)
J. Biol. Chem. 289, 10126-10139
   Abstract »    Full Text »    PDF »
Pharmacological Distinction between Soluble and Transmembrane Adenylyl Cyclases.
J. L. Bitterman, L. Ramos-Espiritu, A. Diaz, L. R. Levin, and J. Buck (2013)
J. Pharmacol. Exp. Ther. 347, 589-598
   Abstract »    Full Text »    PDF »
Cyclic AMP-Rap1A signaling activates RhoA to induce {alpha}2c-adrenoceptor translocation to the cell surface of microvascular smooth muscle cells.
S. C. Jeyaraj, N. T. Unger, A. H. Eid, S. Mitra, N. Paul El-Dahdah, L. A. Quilliam, N. A. Flavahan, and M. A. Chotani (2012)
Am J Physiol Cell Physiol 303, C499-C511
   Abstract »    Full Text »    PDF »
Soluble Adenylyl Cyclase Activity Is Necessary for Retinal Ganglion Cell Survival and Axon Growth.
R. G. Corredor, E. F. Trakhtenberg, W. Pita-Thomas, X. Jin, Y. Hu, and J. L. Goldberg (2012)
J. Neurosci. 32, 7734-7744
   Abstract »    Full Text »    PDF »
Role of soluble adenylyl cyclase in the heart.
J. Chen, L. R. Levin, and J. Buck (2012)
Am J Physiol Heart Circ Physiol 302, H538-H543
   Abstract »    Full Text »    PDF »
Spatiotemporally Regulated Protein Kinase A Activity Is a Critical Regulator of Growth Factor-Stimulated Extracellular Signal-Regulated Kinase Signaling in PC12 Cells.
K. J. Herbst, M. D. Allen, and J. Zhang (2011)
Mol. Cell. Biol. 31, 4063-4075
   Abstract »    Full Text »    PDF »
The Soluble Guanylyl Cyclase Activator YC-1 Increases Intracellular cGMP and cAMP via Independent Mechanisms in INS-1E Cells.
L. S. Ramos-Espiritu, K. C. Hess, J. Buck, and L. R. Levin (2011)
J. Pharmacol. Exp. Ther. 338, 925-931
   Abstract »    Full Text »    PDF »
Cyclic Nucleotide Phosphodiesterase 1 Regulates Lysosome-Dependent Type I Collagen Protein Degradation in Vascular Smooth Muscle Cells.
Y. Cai, C. L. Miller, D. J. Nagel, K.-I. Jeon, S. Lim, P. Gao, P. A. Knight, and C. Yan (2011)
Arterioscler Thromb Vasc Biol 31, 616-623
   Abstract »    Full Text »    PDF »
Decreased Soluble Adenylyl Cyclase Activity in Cystic Fibrosis Is Related to Defective Apical Bicarbonate Exchange and Affects Ciliary Beat Frequency Regulation.
A. Schmid, Z. Sutto, N. Schmid, L. Novak, P. Ivonnet, G. Horvath, G. Conner, N. Fregien, and M. Salathe (2010)
J. Biol. Chem. 285, 29998-30007
   Abstract »    Full Text »    PDF »
Involvement of cAMP in nerve growth factor-triggered p35/Cdk5 activation and differentiation in PC12 cells.
M.-C. Chen, H. Lin, F.-N. Hsu, P.-H. Huang, G.-S. Lee, and P. S. Wang (2010)
Am J Physiol Cell Physiol 299, C516-C527
   Abstract »    Full Text »    PDF »
{beta}-Adrenergic activation of electrogenic K+ and Cl- secretion in guinea pig distal colonic epithelium proceeds via separate cAMP signaling pathways.
S. T. Halm, J. Zhang, and D. R. Halm (2010)
Am J Physiol Gastrointest Liver Physiol 299, G81-G95
   Abstract »    Full Text »    PDF »
Augmented Sodium Currents Contribute to the Enhanced Excitability of Small Diameter Capsaicin-Sensitive Sensory Neurons Isolated From Nf1+/- Mice.
Y. Wang, J. H. Duan, C. M. Hingtgen, and G. D. Nicol (2010)
J Neurophysiol 103, 2085-2094
   Abstract »    Full Text »    PDF »
Epac Activates the Small G Proteins Rap1 and Rab3A to Achieve Exocytosis.
M. T. Branham, M. A. Bustos, G. A. De Blas, H. Rehmann, V. E. P. Zarelli, C. L. Trevino, A. Darszon, L. S. Mayorga, and C. N. Tomes (2009)
J. Biol. Chem. 284, 24825-24839
   Abstract »    Full Text »    PDF »
Pituitary Adenylate Cyclase-Activating Polypeptide and Its Receptors: 20 Years after the Discovery.
D. Vaudry, A. Falluel-Morel, S. Bourgault, M. Basille, D. Burel, O. Wurtz, A. Fournier, B. K. C. Chow, H. Hashimoto, L. Galas, et al. (2009)
Pharmacol. Rev. 61, 283-357
   Abstract »    Full Text »    PDF »
Regulation of Epithelial Na+ Transport by Soluble Adenylyl Cyclase in Kidney Collecting Duct Cells.
K. R. Hallows, H. Wang, R. S. Edinger, M. B. Butterworth, N. M. Oyster, H. Li, J. Buck, L. R. Levin, J. P. Johnson, and N. M. Pastor-Soler (2009)
J. Biol. Chem. 284, 5774-5783
   Abstract »    Full Text »    PDF »
Glucose and GLP-1 Stimulate cAMP Production via Distinct Adenylyl Cyclases in INS-1E Insulinoma Cells.
L. S. Ramos, J. H. Zippin, M. Kamenetsky, J. Buck, and L. R. Levin (2008)
J. Gen. Physiol. 132, 329-338
   Abstract »    Full Text »    PDF »
A cAMP-Dependent, Protein Kinase A-Independent Signaling Pathway Mediating Neuritogenesis through Egr1 in PC12 Cells.
A. Ravni, D. Vaudry, M. J. Gerdin, M. V. Eiden, A. Falluel-Morel, B. J. Gonzalez, H. Vaudry, and L. E. Eiden (2008)
Mol. Pharmacol. 73, 1688-1708
   Abstract »    Full Text »    PDF »
Spectrin-anchored phosphodiesterase 4D4 restricts cAMP from disrupting microtubules and inducing endothelial cell gap formation.
J. Creighton, B. Zhu, M. Alexeyev, and T. Stevens (2008)
J. Cell Sci. 121, 110-119
   Abstract »    Full Text »    PDF »
Soluble Adenylyl Cyclase Is Localized to Cilia and Contributes to Ciliary Beat Frequency Regulation via Production of cAMP.
A. Schmid, Z. Sutto, M.-C. Nlend, G. Horvath, N. Schmid, J. Buck, L. R. Levin, G. E. Conner, N. Fregien, and M. Salathe (2007)
J. Gen. Physiol. 130, 99-109
   Abstract »    Full Text »    PDF »
PACAP type I receptor transactivation is essential for IGF-1 receptor signalling and antiapoptotic activity in neurons.
N. Delcourt, E. Thouvenot, B. Chanrion, N. Galeotti, P. Jouin, J. Bockaert, and P. Marin (2007)
EMBO J. 26, 1542-1551
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882