Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Biol. Chem. 281 (27): 18901-18907

© 2006 by The American Society for Biochemistry and Molecular Biology, Inc.

The Epithelial Na+ Channel Is Inhibited by a Peptide Derived from Proteolytic Processing of Its {alpha} Subunit*

Marcelo D. Carattino{ddagger}, Shaohu Sheng{ddagger}, James B. Bruns{ddagger}, Joseph M. Pilewski§, Rebecca P. Hughey{ddagger}1, , and Thomas R. Kleyman{ddagger}

{ddagger}Renal-Electrolyte Division and §Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261

Abstract: Epithelial sodium channels (ENaCs) mediate Na+ entry across the apical membrane of high resistance epithelia that line the distal nephron, airway and alveoli, and distal colon. These channels are composed of three homologous subunits, termed {alpha}, beta, and {gamma}, which have intracellular amino and carboxyl termini and two membrane-spanning domains connected by large extracellular loops. Maturation of ENaC subunits involves furin-dependent cleavage of the extracellular loops at two sites within the {alpha} subunit and at a single site within the {gamma} subunit. The {alpha} subunits must be cleaved twice, immediately following Arg-205 and Arg-231, in order for channels to be fully active. Channels lacking {alpha} subunit cleavage are inactive with a very low open probability. In contrast, channels lacking both {alpha} subunit cleavage and the tract {alpha}Asp-206-Arg-231 are active when expressed in oocytes, suggesting that {alpha}Asp-206-Arg-231 functions as an inhibitor that stabilizes the channel in the closed conformation. A synthetic 26-mer peptide ({alpha}-26), corresponding to {alpha}Asp-206-Arg-231, reversibly inhibits wild-type mouse ENaCs expressed in Xenopus oocytes, as well as endogenous Na+ channels expressed in either a mouse collecting duct cell line or primary cultures of human airway epithelial cells. The IC50 for amiloride block of ENaC was not affected by the presence of {alpha}-26, indicating that {alpha}-26 does not bind to or interact with the amiloride binding site. Substitution of Arg residues within {alpha}-26 with Glu, or substitution of Pro residues with Ala, significantly reduced the efficacy of {alpha}-26. The peptide inhibits ENaC by reducing channel open probability. Our results suggest that proteolysis of the {alpha} subunit activates ENaC by disassociating an inhibitory domain ({alpha}Asp-206-Arg-231) from its effector site within the channel complex.


Received for publication May 1, 2006.

* This work was supported by grants from the National Institutes of Health (DK065161, P30 DK072506, and P50 DK54690) and the Cystic Fibrosis Foundation. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 To whom correspondence should be addressed: Renal-Electrolyte Division, University of Pittsburgh, S933 Scaife Hall, 3550 Terrace St., Pittsburgh, PA 15261. Tel.: 412-383-8949; Fax: 412-383-8956; E-mail: hughey{at}dom.pitt.edu.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Identification of the SPLUNC1 ENaC-inhibitory domain yields novel strategies to treat sodium hyperabsorption in cystic fibrosis airway epithelial cultures.
C. A. Hobbs, M. G. Blanchard, O. Alijevic, C. D. Tan, S. Kellenberger, S. Bencharit, R. Cao, M. Kesimer, W. G. Walton, A. G. Henderson, et al. (2013)
Am J Physiol Lung Cell Mol Physiol 305, L990-L1001
   Abstract »    Full Text »    PDF »
Gamma subunit second transmembrane domain contributes to epithelial sodium channel gating and amiloride block.
S. Shi and T. R. Kleyman (2013)
Am J Physiol Renal Physiol 305, F1585-F1592
   Abstract »    Full Text »    PDF »
The epithelial sodium channel mediates the directionality of galvanotaxis in human keratinocytes.
H.-y. Yang, R.-P. Charles, E. Hummler, D. L. Baines, and R. R. Isseroff (2013)
J. Cell Sci. 126, 1942-1951
   Abstract »    Full Text »    PDF »
Protease stimulation of renal sodium reabsorption in vivo by activation of the collecting duct epithelial sodium channel (ENaC).
G. Jacquillet, H. Chichger, R. J. Unwin, and D. G. Shirley (2013)
Nephrol. Dial. Transplant. 28, 839-845
   Abstract »    Full Text »    PDF »
Feedback inhibition of ENaC during acute sodium loading in vivo.
A. B. Patel, G. Frindt, and L. G. Palmer (2013)
Am J Physiol Renal Physiol 304, F222-F232
   Abstract »    Full Text »    PDF »
Retraction.
(2012)
FASEB J 26, 4348-4359
   Full Text »    PDF »
Inhibitory Tract Traps the Epithelial Na+ Channel in a Low Activity Conformation.
O. B. Kashlan, B. M. Blobner, Z. Zuzek, M. D. Carattino, and T. R. Kleyman (2012)
J. Biol. Chem. 287, 20720-20726
   Abstract »    Full Text »    PDF »
Extracellular Finger Domain Modulates the Response of the Epithelial Sodium Channel to Shear Stress.
S. Shi, B. M. Blobner, O. B. Kashlan, and T. R. Kleyman (2012)
J. Biol. Chem. 287, 15439-15444
   Abstract »    Full Text »    PDF »
ENaCs and ASICs as therapeutic targets.
Y. J. Qadri, A. K. Rooj, and C. M. Fuller (2012)
Am J Physiol Cell Physiol 302, C943-C965
   Abstract »    Full Text »    PDF »
TMPRSS4-dependent activation of the epithelial sodium channel requires cleavage of the {gamma}-subunit distal to the furin cleavage site.
C. J. Passero, G. M. Mueller, M. M. Myerburg, M. D. Carattino, R. P. Hughey, and T. R. Kleyman (2012)
Am J Physiol Renal Physiol 302, F1-F8
   Abstract »    Full Text »    PDF »
ENaC structure and function in the wake of a resolved structure of a family member.
O. B. Kashlan and T. R. Kleyman (2011)
Am J Physiol Renal Physiol 301, F684-F696
   Abstract »    Full Text »    PDF »
External Cu2+ Inhibits Human Epithelial Na+ Channels by Binding at a Subunit Interface of Extracellular Domains.
J. Chen, M. M. Myerburg, C. J. Passero, K. L. Winarski, and S. Sheng (2011)
J. Biol. Chem. 286, 27436-27446
   Abstract »    Full Text »    PDF »
Second transmembrane domain modulates epithelial sodium channel gating in response to shear stress.
T. Abi-Antoun, S. Shi, L. A. Tolino, T. R. Kleyman, and M. D. Carattino (2011)
Am J Physiol Renal Physiol 300, F1089-F1095
   Abstract »    Full Text »    PDF »
Clues to renal sodium retention.
M. D. Carattino and C. J. Passero (2011)
Am J Physiol Renal Physiol 300, F639-F640
   Full Text »    PDF »
Constraint-based, Homology Model of the Extracellular Domain of the Epithelial Na+ Channel {alpha} Subunit Reveals a Mechanism of Channel Activation by Proteases.
O. B. Kashlan, J. L. Adelman, S. Okumura, B. M. Blobner, Z. Zuzek, R. P. Hughey, T. R. Kleyman, and M. Grabe (2011)
J. Biol. Chem. 286, 649-660
   Abstract »    Full Text »    PDF »
Allosteric Inhibition of the Epithelial Na+ Channel through Peptide Binding at Peripheral Finger and Thumb Domains.
O. B. Kashlan, C. R. Boyd, C. Argyropoulos, S. Okumura, R. P. Hughey, M. Grabe, and T. R. Kleyman (2010)
J. Biol. Chem. 285, 35216-35223
   Abstract »    Full Text »    PDF »
Role of Epithelial Sodium Channels and Their Regulators in Hypertension.
R. Soundararajan, D. Pearce, R. P. Hughey, and T. R. Kleyman (2010)
J. Biol. Chem. 285, 30363-30369
   Abstract »    Full Text »    PDF »
Cys Palmitoylation of the {beta} Subunit Modulates Gating of the Epithelial Sodium Channel.
G. M. Mueller, A. B. Maarouf, C. L. Kinlough, N. Sheng, O. B. Kashlan, S. Okumura, S. Luthy, T. R. Kleyman, and R. P. Hughey (2010)
J. Biol. Chem. 285, 30453-30462
   Abstract »    Full Text »    PDF »
Defining an inhibitory domain in the gamma subunit of the epithelial sodium channel.
C. J. Passero, M. D. Carattino, O. B. Kashlan, M. M. Myerburg, R. P. Hughey, and T. R. Kleyman (2010)
Am J Physiol Renal Physiol 299, F854-F861
   Abstract »    Full Text »    PDF »
Interleukin-6 stimulates epithelial sodium channels in mouse cortical collecting duct cells.
K. Li, D. Guo, H. Zhu, K. S. Hering-Smith, L. L. Hamm, J. Ouyang, and Y. Dong (2010)
Am J Physiol Regulatory Integrative Comp Physiol 299, R590-R595
   Abstract »    Full Text »    PDF »
Alternative Mechanism of Activation of the Epithelial Na+ Channel by Cleavage.
J. C. Hu, A. Bengrine, A. Lis, and M. S. Awayda (2009)
J. Biol. Chem. 284, 36334-36345
   Abstract »    Full Text »    PDF »
The {delta}-Subunit of the Epithelial Sodium Channel (ENaC) Enhances Channel Activity and Alters Proteolytic ENaC Activation.
S. Haerteis, B. Krueger, C. Korbmacher, and R. Rauh (2009)
J. Biol. Chem. 284, 29024-29040
   Abstract »    Full Text »    PDF »
ENaC at the Cutting Edge: Regulation of Epithelial Sodium Channels by Proteases.
T. R. Kleyman, M. D. Carattino, and R. P. Hughey (2009)
J. Biol. Chem. 284, 20447-20451
   Abstract »    Full Text »    PDF »
Novel Determinants of Epithelial Sodium Channel Gating within Extracellular Thumb Domains.
A. B. Maarouf, N. Sheng, J. Chen, K. L. Winarski, S. Okumura, M. D. Carattino, C. R. Boyd, T. R. Kleyman, and S. Sheng (2009)
J. Biol. Chem. 284, 7756-7765
   Abstract »    Full Text »    PDF »
Plasmin and Sodium Retention in Nephrotic Syndrome.
T. R. Kleyman and R. P. Hughey (2009)
J. Am. Soc. Nephrol. 20, 233-234
   Full Text »    PDF »
Plasmin Activates Epithelial Na+ Channels by Cleaving the {gamma} Subunit.
C. J. Passero, G. M. Mueller, H. Rondon-Berrios, S. P. Tofovic, R. P. Hughey, and T. R. Kleyman (2008)
J. Biol. Chem. 283, 36586-36591
   Abstract »    Full Text »    PDF »
Deubiquitylation Regulates Activation and Proteolytic Cleavage of ENaC.
D. Ruffieux-Daidie, O. Poirot, S. Boulkroun, F. Verrey, S. Kellenberger, and O. Staub (2008)
J. Am. Soc. Nephrol. 19, 2170-2180
   Abstract »    Full Text »    PDF »
Single-channel analysis of functional epithelial sodium channel (ENaC) stability at the apical membrane of A6 distal kidney cells.
L. Yu, M. N. Helms, Q. Yue, and D. C. Eaton (2008)
Am J Physiol Renal Physiol 295, F1519-F1527
   Abstract »    Full Text »    PDF »
Mechanisms of ENaC Regulation and Clinical Implications.
V. Bhalla and K. R. Hallows (2008)
J. Am. Soc. Nephrol. 19, 1845-1854
   Abstract »    Full Text »    PDF »
Trypsin can activate the epithelial sodium channel (ENaC) in microdissected mouse distal nephron.
V. Nesterov, A. Dahlmann, M. Bertog, and C. Korbmacher (2008)
Am J Physiol Renal Physiol 295, F1052-F1062
   Abstract »    Full Text »    PDF »
Cleavage in the {gamma}-subunit of the epithelial sodium channel (ENaC) plays an important role in the proteolytic activation of near-silent channels.
A. Diakov, K. Bera, M. Mokrushina, B. Krueger, and C. Korbmacher (2008)
J. Physiol. 586, 4587-4608
   Abstract »    Full Text »    PDF »
AICAR activates AMPK and alters PIP2 association with the epithelial sodium channel ENaC to inhibit Na+ transport in H441 lung epithelial cells.
O. J. Mace, A. M. Woollhead, and D. L. Baines (2008)
J. Physiol. 586, 4541-4557
   Abstract »    Full Text »    PDF »
Proteolytic Processing of the Epithelial Sodium Channel {gamma} Subunit Has a Dominant Role in Channel Activation.
M. D. Carattino, R. P. Hughey, and T. R. Kleyman (2008)
J. Biol. Chem. 283, 25290-25295
   Abstract »    Full Text »    PDF »
A new SGK1 knockout mouse.
F. J. McDonald (2008)
Am J Physiol Renal Physiol 294, F1296-F1297
   Full Text »    PDF »
Small Molecule Activator of the Human Epithelial Sodium Channel.
M. Lu, F. Echeverri, D. Kalabat, B. Laita, D. S. Dahan, R. D. Smith, H. Xu, L. Staszewski, J. Yamamoto, J. Ling, et al. (2008)
J. Biol. Chem. 283, 11981-11994
   Abstract »    Full Text »    PDF »
Prostasin expression is regulated by airway surface liquid volume and is increased in cystic fibrosis.
M. M. Myerburg, E. E. McKenna, C. J. Luke, R. A. Frizzell, T. R. Kleyman, and J. M. Pilewski (2008)
Am J Physiol Lung Cell Mol Physiol 294, L932-L941
   Abstract »    Full Text »    PDF »
Nedd4-2 Induces Endocytosis and Degradation of Proteolytically Cleaved Epithelial Na+ Channels.
R. Kabra, K. K. Knight, R. Zhou, and P. M. Snyder (2008)
J. Biol. Chem. 283, 6033-6039
   Abstract »    Full Text »    PDF »
Defining an inhibitory domain in the {alpha}-subunit of the epithelial sodium channel.
M. D. Carattino, C. J. Passero, C. A. Steren, A. B. Maarouf, J. M. Pilewski, M. M. Myerburg, R. P. Hughey, and T. R. Kleyman (2008)
Am J Physiol Renal Physiol 294, F47-F52
   Abstract »    Full Text »    PDF »
A Segment of {gamma} ENaC Mediates Elastase Activation of Na+ Transport.
A. Adebamiro, Y. Cheng, U. S. Rao, H. Danahay, and R. J. Bridges (2007)
J. Gen. Physiol. 130, 611-629
   Abstract »    Full Text »    PDF »
Epithelial Sodium Channel Exit from the Endoplasmic Reticulum Is Regulated by a Signal within the Carboxyl Cytoplasmic Domain of the {alpha} Subunit.
G. M. Mueller, O. B. Kashlan, J. B. Bruns, A. B. Maarouf, M. Aridor, T. R. Kleyman, and R. P. Hughey (2007)
J. Biol. Chem. 282, 33475-33483
   Abstract »    Full Text »    PDF »
Function and dynamics of PKD2 in Chlamydomonas reinhardtii flagella.
K. Huang, D. R. Diener, A. Mitchell, G. J. Pazour, G. B. Witman, and J. L. Rosenbaum (2007)
J. Cell Biol. 179, 501-514
   Abstract »    Full Text »    PDF »
Functional cross talk between ENaC and pendrin.
R. P. Hughey and T. R. Kleyman (2007)
Am J Physiol Renal Physiol 293, F1439-F1440
   Full Text »    PDF »
Indirect Activation of the Epithelial Na+ Channel by Trypsin.
A. Bengrine, J. Li, L. L. Hamm, and M. S. Awayda (2007)
J. Biol. Chem. 282, 26884-26896
   Abstract »    Full Text »    PDF »
Functional Role of Extracellular Loop Cysteine Residues of the Epithelial Na+ Channel in Na+ Self-inhibition.
S. Sheng, A. B. Maarouf, J. B. Bruns, R. P. Hughey, and T. R. Kleyman (2007)
J. Biol. Chem. 282, 20180-20190
   Abstract »    Full Text »    PDF »
Epithelial Na+ Channels Are Fully Activated by Furin- and Prostasin-dependent Release of an Inhibitory Peptide from the {gamma}-Subunit.
J. B. Bruns, M. D. Carattino, S. Sheng, A. B. Maarouf, O. A. Weisz, J. M. Pilewski, R. P. Hughey, and T. R. Kleyman (2007)
J. Biol. Chem. 282, 6153-6160
   Abstract »    Full Text »    PDF »
Airway Surface Liquid Volume Regulates ENaC by Altering the Serine Protease-Protease Inhibitor Balance: A MECHANISM FOR SODIUM HYPERABSORPTION IN CYSTIC FIBROSIS.
M. M. Myerburg, M. B. Butterworth, E. E. McKenna, K. W. Peters, R. A. Frizzell, T. R. Kleyman, and J. M. Pilewski (2006)
J. Biol. Chem. 281, 27942-27949
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882