Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Biol. Chem. 281 (36): 26562-26568

© 2006 by The American Society for Biochemistry and Molecular Biology, Inc.

PCAF Modulates PTEN Activity*{diamondsuit}

Koichi Okumura{ddagger}, Michelle Mendoza§, Robert M. Bachoo, Ronald A. DePinho||**, Webster K. Cavenee{ddagger}§{ddagger}{ddagger}§§, , and Frank B. Furnari{ddagger}§§1

{ddagger}Ludwig Institute for Cancer Research, San Diego Branch, §Biomedical Sciences Graduate Program, {ddagger}{ddagger}Center for Molecular Genetics, §§Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, California 92093-0660, the Departments of Neurology and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9133, and the ||Department of Medical Oncology and **Departments of Genetics and Medicine, Harvard Medical School, Boston, Massachusetts 02115

Abstract: The PTEN protein has a single catalytic domain possessing both lipid phosphoinositol and protein phosphatase activities. The lipid phosphoinositol phosphatase activity is essential for PTEN to block the cell cycle in the G1 phase and thereby to suppress tumor formation and progression (Cantley, L. C., and Neel, B. G. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 4240-4245), although the mechanisms governing PTEN activity under normal and neoplastic growth conditions remain unclear. Here, we report that PTEN interacts physically and functionally with PCAF, a histone acetyltransferase that regulates gene transcription through interaction with p300/CBP and various sequencespecific transcription factors (Nakatani, Y. (2001) Genes Cells 6, 79-86). Expression of PCAF results in increased acetylation of lysine residues (Lys125 and Lys128) within the catalytic cleft of PTEN, a structure essential for phosphatidylinositol 3,4,5-trisphosphate specificity (Lee, J. O., Yang, H., Georgescu, M. M., Di Cristofano, A., Maehama, T., Shi, Y., Dixon, J. E., Pandolfi, P., and Pavletich, N. P. (1999) Cell 99, 323-334). The acetylation of PTEN caused by PCAF expression depends on the presence of growth factors. Reduction of endogenous PCAF activity using shRNA results in a loss of PTEN acetylation in response to growth factors and restores the ability of PTEN to down-regulate phosphatidylinositol 3-kinase signaling and to induce G1 cell cycle arrest. The retention of phosphatidylinositol 3-kinase/AKT signaling and cell cycle regulatory activities of acetylationresistant PTEN K125R and K128R mutants in the presence of enforced PCAF expression suggest a causal relationship. Together, these findings indicate a mechanism of PTEN regulation that forges a link between distinct cancer-relevant pathways central to the control of growth factor signaling and gene expression.

Received for publication June 5, 2006. Revision received July 6, 2006.

* This work was supported in part by Scholar Awards for cancer research from the Kimmel Foundation and the V Foundation (to F. B. F.), Grant CA95616 from the National Cancer Institute (to W. K. C., R. M. B., F. B. F., and R. A. D.), and by a Fellow Award from the National Foundation for Cancer Research (to W. K. C.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

{diamondsuit} This article was selected as a Paper of the Week.

1 To whom correspondence should be addressed. Tel.: 858-534-7819; Fax: 858-534-7750; E-mail: ffurnari{at}

Phosphorylation-mediated PTEN conformational closure and deactivation revealed with protein semisynthesis.
D. Bolduc, M. Rahdar, B. Tu-Sekine, S. C. Sivakumaren, D. Raben, L. M. Amzel, P. Devreotes, S. B. Gabelli, and P. Cole (2013)
eLife Sci 2, e00691
   Abstract »    Full Text »    PDF »
Lysine Acetyltransferase GCN5 Potentiates the Growth of Non-small Cell Lung Cancer via Promotion of E2F1, Cyclin D1, and Cyclin E1 Expression.
L. Chen, T. Wei, X. Si, Q. Wang, Y. Li, Y. Leng, A. Deng, J. Chen, G. Wang, S. Zhu, et al. (2013)
J. Biol. Chem. 288, 14510-14521
   Abstract »    Full Text »    PDF »
PTEN at a glance.
Y. Shi, B. E. Paluch, X. Wang, and X. Jiang (2012)
J. Cell Sci. 125, 4687-4692
   Full Text »    PDF »
On-off system for PI3-kinase-Akt signaling through S-nitrosylation of phosphatase with sequence homology to tensin (PTEN).
N. Numajiri, K. Takasawa, T. Nishiya, H. Tanaka, K. Ohno, W. Hayakawa, M. Asada, H. Matsuda, K. Azumi, H. Kamata, et al. (2011)
PNAS 108, 10349-10354
   Abstract »    Full Text »    PDF »
Protein Interactions of Phosphatase and Tensin Homologue (PTEN) and Its Cancer-associated G20E Mutant Compared by Using Stable Isotope Labeling by Amino Acids in Cell Culture-based Parallel Affinity Purification.
J. Gunaratne, M. X. Goh, H. L. F. Swa, F. Y. Lee, E. Sanford, L. M. Wong, K. A. Hogue, W. P. Blackstock, and K. Okumura (2011)
J. Biol. Chem. 286, 18093-18103
   Abstract »    Full Text »    PDF »
The genetics of epigenetics: is there a link with cardiovascular disease.
Q. Xiao and S. Ye (2011)
Heart 97, 96-97
   Full Text »    PDF »
Genetic variation in PCAF, a key mediator in epigenetics, is associated with reduced vascular morbidity and mortality: evidence for a new concept from three independent prospective studies.
D. Pons, S. Trompet, A. J. M. de Craen, P. E. Thijssen, P. H. A. Quax, M. R. de Vries, R. J. Wierda, P. J. van den Elsen, P. S. Monraats, M. M. Ewing, et al. (2011)
Heart 97, 143-150
   Abstract »    Full Text »    PDF »
Regulation of global genome nucleotide excision repair by SIRT1 through xeroderma pigmentosum C.
M. Ming, C. R. Shea, X. Guo, X. Li, K. Soltani, W. Han, and Y.-Y. He (2010)
PNAS 107, 22623-22628
   Abstract »    Full Text »    PDF »
PTEN Tumor Suppressor Network in PI3K-Akt Pathway Control.
M.-M. Georgescu (2010)
Genes & Cancer 1, 1170-1177
   Abstract »    Full Text »    PDF »
ProNGF Induces PTEN via p75NTR to Suppress Trk-Mediated Survival Signaling in Brain Neurons.
W. Song, M. Volosin, A. B. Cragnolini, B. L. Hempstead, and W. J. Friedman (2010)
J. Neurosci. 30, 15608-15615
   Abstract »    Full Text »    PDF »
Functional Interaction of Phosphatase and Tensin Homologue (PTEN) with the E3 Ligase NEDD4-1 during Neuronal Response to Zinc.
Y.-D. Kwak, B. Wang, W. Pan, H. Xu, X. Jiang, and F.-F. Liao (2010)
J. Biol. Chem. 285, 9847-9857
   Abstract »    Full Text »    PDF »
The Nrf2-Keap1-ARE Toxicity Pathway as a Cellular Sensor for Skin Sensitizers--Functional Relevance and a Hypothesis on Innate Reactions to Skin Sensitizers.
A. Natsch (2010)
Toxicol. Sci. 113, 284-292
   Abstract »    Full Text »    PDF »
A phosphorylation-dependent intramolecular interaction regulates the membrane association and activity of the tumor suppressor PTEN.
M. Rahdar, T. Inoue, T. Meyer, J. Zhang, F. Vazquez, and P. N. Devreotes (2009)
PNAS 106, 480-485
   Abstract »    Full Text »    PDF »
PCAF Acetylates {beta}-Catenin and Improves Its Stability.
X. Ge, Q. Jin, F. Zhang, T. Yan, and Q. Zhai (2009)
Mol. Biol. Cell 20, 419-427
   Abstract »    Full Text »    PDF »
PTEN Acetylation Modulates Its Interaction with PDZ Domain.
T. Ikenoue, K. Inoki, B. Zhao, and K.-L. Guan (2008)
Cancer Res. 68, 6908-6912
   Abstract »    Full Text »    PDF »
Array-based analysis of the effects of trichostatin A and CG-1521 on cell cycle and cell death in LNCaP prostate cancer cells.
S. Roy, R. Jeffrey, and M. Tenniswood (2008)
Mol. Cancer Ther. 7, 1931-1939
   Abstract »    Full Text »    PDF »
Hepatic insulin resistance induced by prenatal alcohol exposure is associated with reduced PTEN and TRB3 acetylation in adult rat offspring.
X.-H. Yao and B. L. G. Nyomba (2008)
Am J Physiol Regulatory Integrative Comp Physiol 294, R1797-R1806
   Abstract »    Full Text »    PDF »
The Protein Phosphatase Activity of PTEN Regulates Src Family Kinases and Controls Glioma Migration.
N. Dey, H. E. Crosswell, P. De, R. Parsons, Q. Peng, J. D. Su, and D. L. Durden (2008)
Cancer Res. 68, 1862-1871
   Abstract »    Full Text »    PDF »
New insights into PTEN.
T. Tamguney and D. Stokoe (2007)
J. Cell Sci. 120, 4071-4079
   Abstract »    Full Text »    PDF »
Characterization of novel inhibitors of histone acetyltransferases.
E. D. Eliseeva, V. Valkov, M. Jung, and M. O. Jung (2007)
Mol. Cancer Ther. 6, 2391-2398
   Abstract »    Full Text »    PDF »
Metabolism, cytoskeleton and cellular signalling in the grip of protein N{epsilon} - and O-acetylation.
X.-J. Yang and S. Gregoire (2007)
EMBO Rep. 8, 556-562
   Abstract »    Full Text »    PDF »
Site-specific Acetylation of p53 Directs Selective Transcription Complex Assembly.
S. Roy and M. Tenniswood (2007)
J. Biol. Chem. 282, 4765-4771
   Abstract »    Full Text »    PDF »
PTEN Regulation, a Novel Function for the p85 Subunit of Phosphoinositide 3-Kinase.
D. F. Barber, M. Alvarado-Kristensson, A. Gonzalez-Garcia, R. Pulido, and A. C. Carrera (2006)
Sci. STKE 2006, pe49
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882