Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Biol. Chem. 284 (5): 2811-2822

© 2009 by The American Society for Biochemistry and Molecular Biology, Inc.

Lactate Inhibits Lipolysis in Fat Cells through Activation of an Orphan G-protein-coupled Receptor, GPR81*


Changlu Liu1, Jiejun Wu, Jessica Zhu, Chester Kuei, Jingxue Yu, Jonathan Shelton, Steven W. Sutton, Xiaorong Li, Su Jin Yun, Taraneh Mirzadegan, Curt Mazur2, Fredrik Kamme3, , and Timothy W. Lovenberg

Johnson & Johnson Pharmaceutical Research & Development, LLC, San Diego, California 92121

Abstract: Lactic acid is a well known metabolic by-product of intense exercise, particularly under anaerobic conditions. Lactate is also a key source of energy and an important metabolic substrate, and it has also been hypothesized to be a signaling molecule directing metabolic activity. Here we show that GPR81, an orphan G-protein-coupled receptor highly expressed in fat, is in fact a sensor for lactate. Lactate activates GPR81 in its physiological concentration range of 1–20 mM and suppresses lipolysis in mouse, rat, and human adipocytes as well as in differentiated 3T3-L1 cells. Adipocytes from GPR81-deficient mice lack an antilipolytic response to lactate but are responsive to other antilipolytic agents. Lactate specifically induces internalization of GPR81 after receptor activation. Site-directed mutagenesis of GPR81 coupled with homology modeling demonstrates that classically conserved key residues in the transmembrane binding domains are responsible for interacting with lactate. Our results indicate that lactate suppresses lipolysis in adipose tissue through a direct activation of GPR81. GPR81 may thus be an attractive target for the treatment of dyslipidemia and other metabolic disorders.

Received for publication August 19, 2008. Revision received October 25, 2008.

* The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.


The on-line version of this article (available at contains supplemental Tables 1–3 and Figs. 1–6.

2 Present address: Isis Pharmaceuticals, Inc., 1896 Rutherford Rd., Carlsbad, CA 92008.

3 Present address: Cyntellect, 6620 Mesa Ridge Rd., San Diego, CA 92121.

1 To whom correspondence should be addressed: Johnson & Johnson Pharmaceutical Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA 92121. Tel.: 858-784-3059; Fax: 858-450-2090; E-mail: cliu9{at}

The Antiallergic Mast Cell Stabilizers Lodoxamide and Bufrolin as the First High and Equipotent Agonists of Human and Rat GPR35.
A. E. MacKenzie, G. Caltabiano, T. C. Kent, L. Jenkins, J. E. McCallum, B. D. Hudson, S. A. Nicklin, L. Fawcett, R. Markwick, S. J. Charlton, et al. (2014)
Mol. Pharmacol. 85, 91-104
   Abstract »    Full Text »    PDF »
Artificial Sweeteners Stimulate Adipogenesis and Suppress Lipolysis Independently of Sweet Taste Receptors.
B. R. Simon, S. D. Parlee, B. S. Learman, H. Mori, E. L. Scheller, W. P. Cawthorn, X. Ning, K. Gallagher, B. Tyrberg, F. M. Assadi-Porter, et al. (2013)
J. Biol. Chem. 288, 32475-32489
   Abstract »    Full Text »    PDF »
Are GPCRs Still a Source of New Targets?.
S. L. Garland (2013)
J Biomol Screen 18, 947-966
   Abstract »    Full Text »    PDF »
Exercise-inducible factors to activate lipolysis in adipocytes.
T. Hashimoto, K. Sato, and M. Iemitsu (2013)
J Appl Physiol 115, 260-267
   Abstract »    Full Text »    PDF »
Lactate Receptor Sites Link Neurotransmission, Neurovascular Coupling, and Brain Energy Metabolism.
K. H. Lauritzen, C. Morland, M. Puchades, S. Holm-Hansen, E. M. Hagelin, F. Lauritzen, H. Attramadal, J. Storm-Mathisen, A. Gjedde, and L. H. Bergersen (2013)
Cereb Cortex
   Abstract »    Full Text »    PDF »
Medium-chain Fatty Acid-sensing Receptor, GPR84, Is a Proinflammatory Receptor.
M. Suzuki, S. Takaishi, M. Nagasaki, Y. Onozawa, I. Iino, H. Maeda, T. Komai, and T. Oda (2013)
J. Biol. Chem. 288, 10684-10691
   Abstract »    Full Text »    PDF »
Naturally occurring HCA1 missense mutations result in loss of function: potential impact on lipid deposition.
J. R. Doyle, J. M. Lane, M. Beinborn, and A. S. Kopin (2013)
J. Lipid Res. 54, 823-830
   Abstract »    Full Text »    PDF »
Endogenous metabolites as ligands for G protein-coupled receptors modulating risk factors for metabolic and cardiovascular disease.
S. Tonack, C. Tang, and S. Offermanns (2013)
Am J Physiol Heart Circ Physiol 304, H501-H513
   Abstract »    Full Text »    PDF »
Hypoxia and Adipose Tissue Function and Dysfunction in Obesity.
P. Trayhurn (2013)
Physiol Rev 93, 1-21
   Abstract »    Full Text »    PDF »
Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs.
B. D. Hudson, E. Christiansen, I. G. Tikhonova, M. Grundmann, E. Kostenis, D. R. Adams, T. Ulven, and G. Milligan (2012)
FASEB J 26, 4951-4965
   Abstract »    Full Text »    PDF »
Oxidative stress-responsive microRNA-320 regulates glycolysis in diverse biological systems.
H. Tang, M. Lee, O. Sharpe, L. Salamone, E. J. Noonan, C. D. Hoang, S. Levine, W. H. Robinson, and J. B. Shrager (2012)
FASEB J 26, 4710-4721
   Abstract »    Full Text »    PDF »
3,5-Dihydroxybenzoic Acid, a Specific Agonist for Hydroxycarboxylic Acid 1, Inhibits Lipolysis in Adipocytes.
C. Liu, C. Kuei, J. Zhu, J. Yu, L. Zhang, A. Shih, T. Mirzadegan, J. Shelton, S. Sutton, M. A. Connelly, et al. (2012)
J. Pharmacol. Exp. Ther. 341, 794-801
   Abstract »    Full Text »    PDF »
Matched work high-intensity interval and continuous running induce similar increases in PGC-1{alpha} mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle.
J. D. Bartlett, C. Hwa Joo, T.-S. Jeong, J. Louhelainen, A. J. Cochran, M. J. Gibala, W. Gregson, G. L. Close, B. Drust, and J. P. Morton (2012)
J Appl Physiol 112, 1135-1143
   Abstract »    Full Text »    PDF »
A metabolic phenotyping approach to understanding relationships between metabolic syndrome and breast tumour responses to chemotherapy.
J. Stebbing, A. Sharma, B. North, T. J. Athersuch, A. Zebrowski, D. Pchejetski, R. C. Coombes, J. K. Nicholson, and H. C. Keun (2012)
Ann. Onc. 23, 860-866
   Abstract »    Full Text »    PDF »
Metabolic characteristics of human subcutaneous abdominal adipose tissueafter overnight fast.
K. N. Frayn and S. M. Humphreys (2012)
Am J Physiol Endocrinol Metab 302, E468-E475
   Abstract »    Full Text »    PDF »
Deficiency of the GPR39 receptor is associated with obesity and altered adipocyte metabolism.
P. S. Petersen, C. Jin, A. N. Madsen, M. Rasmussen, R. Kuhre, K. L. Egerod, L. B. Nielsen, T. W. Schwartz, and B. Holst (2011)
FASEB J 25, 3803-3814
   Abstract »    Full Text »    PDF »
Study of GPR81, the Lactate Receptor, from Distant Species Identifies Residues and Motifs Critical for GPR81 Functions.
C. Kuei, J. Yu, J. Zhu, J. Wu, L. Zhang, A. Shih, T. Mirzadegan, T. Lovenberg, and C. Liu (2011)
Mol. Pharmacol. 80, 848-858
   Abstract »    Full Text »    PDF »
Extracellular Loop 2 of the Free Fatty Acid Receptor 2 Mediates Allosterism of a Phenylacetamide Ago-Allosteric Modulator.
N. J. Smith, R. J. Ward, L. A. Stoddart, B. D. Hudson, E. Kostenis, T. Ulven, J. C. Morris, C. Trankle, I. G. Tikhonova, D. R. Adams, et al. (2011)
Mol. Pharmacol. 80, 163-173
   Abstract »    Full Text »    PDF »
International Union of Basic and Clinical Pharmacology. LXXXII: Nomenclature and Classification of Hydroxy-carboxylic Acid Receptors (GPR81, GPR109A, and GPR109B).
S. Offermanns, S. L. Colletti, T. W. Lovenberg, G. Semple, A. Wise, and A. P. IJzerman (2011)
Pharmacol. Rev. 63, 269-290
   Abstract »    Full Text »    PDF »
IL-23-dependent and -independent enhancement pathways of IL-17A production by lactic acid.
M. Yabu, H. Shime, H. Hara, T. Saito, M. Matsumoto, T. Seya, T. Akazawa, and N. Inoue (2011)
Int. Immunol. 23, 29-41
   Abstract »    Full Text »    PDF »
Molecular Basis for Agonism in the BB3 Receptor: An Epitope Located on the Interface of Transmembrane-III, -VI, and -VII.
F. Gbahou, B. Holst, and T. W. Schwartz (2010)
J. Pharmacol. Exp. Ther. 333, 51-59
   Abstract »    Full Text »    PDF »
Cell-cell and intracellular lactate shuttles.
G. A. Brooks (2009)
J. Physiol. 587, 5591-5600
   Abstract »    Full Text »    PDF »
Peroxisome Proliferator-activated Receptor {gamma} Regulates Expression of the Anti-lipolytic G-protein-coupled Receptor 81 (GPR81/Gpr81).
E. H. Jeninga, A. Bugge, R. Nielsen, S. Kersten, N. Hamers, C. Dani, M. Wabitsch, R. Berger, H. G. Stunnenberg, S. Mandrup, et al. (2009)
J. Biol. Chem. 284, 26385-26393
   Abstract »    Full Text »    PDF »
Role of Lactate in Lipid Metabolism, Just Always Inhibiting Lipolysis?.
H.-j. Xu (2009)
J. Biol. Chem. 284, le5
   Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882