Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Cell Biol. 159 (4): 613-624

Copyright © 2002 by the Rockefeller University Press.


Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria

Elena Rapizzi1,2, Paolo Pinton1, György Szabadkai1, Mariusz R. Wieckowski1, Grégoire Vandecasteele1, Geoff Baird3, Richard A. Tuft2, Kevin E. Fogarty2, and Rosario Rizzuto1

1 Department of Experimental and Diagnostic Medicine, Section of General Pathology, Telethon Center for Cell Imaging and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Via Borsari 46, I-44100 Ferrara, Italy
2 Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01655
3 Howard Hughes Medical Institute and Department of Pharmacology, University of California, San Diego, CA 92093

Address correspondence to Rosario Rizzuto, Dept. Exp. Diagn. Med. Sect. Gen. Pathol., Via Borsari 46, I-44100 Ferrara, Italy. Tel.: 39-0532-291361. Fax: 39-0532-247278. E-mail: r.rizzuto{at}

Abstract: Although the physiological relevance of mitochondrial Ca2+ homeostasis is widely accepted, no information is yet available on the molecular identity of the proteins involved in this process. Here we analyzed the role of the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane in the transmission of Ca2+ signals between the ER and mitochondria by measuring cytosolic and organelle [Ca2+] with targeted aequorins and Ca2+-sensitive GFPs. In HeLa cells and skeletal myotubes, the transient expression of VDAC enhanced the amplitude of the agonist-dependent increases in mitochondrial matrix Ca2+ concentration by allowing the fast diffusion of Ca2+ from ER release sites to the inner mitochondrial membrane. Indeed, high speed imaging of mitochondrial and cytosolic [Ca2+] changes showed that the delay between the rises occurring in the two compartments is significantly shorter in VDAC-overexpressing cells. As to the functional consequences, VDAC-overexpressing cells are more susceptible to ceramide-induced cell death, thus confirming that mitochondrial Ca2+ uptake plays a key role in the process of apoptosis. These results reveal a novel function for the widely expressed VDAC channel, identifying it as a molecular component of the routes for Ca2+ transport across the mitochondrial membranes.

Key Words: organelle; calcium; apoptosis; signal transduction; porin

Mitochondrial Channels: Ion Fluxes and More.
I. Szabo and M. Zoratti (2014)
Physiol Rev 94, 519-608
   Abstract »    Full Text »    PDF »
Regulation of Cellular Communication by Signaling Microdomains in the Blood Vessel Wall.
M. Billaud, A. W. Lohman, S. R. Johnstone, L. A. Biwer, S. Mutchler, and B. E. Isakson (2014)
Pharmacol. Rev. 66, 513-569
   Abstract »    Full Text »    PDF »
Measurement of Mitochondrial Ca2+ Transport Mediated by Three Transport Proteins: VDAC1, the Na+/Ca2+ Exchanger, and the Ca2+ Uniporter.
D. Ben-Hail, R. Palty, and V. Shoshan-Barmatz (2014)
Cold Spring Harb Protoc 2014, pdb.top066241
   Abstract »    Full Text »    PDF »
Glucose Deprivation Converts Poly(ADP-ribose) Polymerase-1 Hyperactivation into a Transient Energy-producing Process.
D. Buonvicino, L. Formentini, G. Cipriani, and A. Chiarugi (2013)
J. Biol. Chem. 288, 36530-36537
   Abstract »    Full Text »    PDF »
NCX3 regulates mitochondrial Ca2+ handling through the AKAP121-anchored signaling complex and prevents hypoxia-induced neuronal death.
A. Scorziello, C. Savoia, M. J. Sisalli, A. Adornetto, A. Secondo, F. Boscia, A. Esposito, E. V. Polishchuk, R. S. Polishchuk, P. Molinaro, et al. (2013)
J. Cell Sci. 126, 5566-5577
   Abstract »    Full Text »    PDF »
Interactions between sarco-endoplasmic reticulum and mitochondria in cardiac and skeletal muscle - pivotal roles in Ca2+ and reactive oxygen species signaling.
V. Eisner, G. Csordas, and G. Hajnoczky (2013)
J. Cell Sci. 126, 2965-2978
   Abstract »    Full Text »    PDF »
An Interaction between Bcl-xL and the Voltage-dependent Anion Channel (VDAC) Promotes Mitochondrial Ca2+ Uptake.
H. Huang, X. Hu, C. O. Eno, G. Zhao, C. Li, and C. White (2013)
J. Biol. Chem. 288, 19870-19881
   Abstract »    Full Text »    PDF »
JNK1/2 regulates ER-mitochondrial Ca2+ cross-talk during IL-1{beta}-mediated cell death in RINm5F and human primary {beta}-cells.
G. Verma, H. Bhatia, and M. Datta (2013)
Mol. Biol. Cell 24, 2058-2071
   Abstract »    Full Text »    PDF »
Potential Role of BNIP3 in Cardiac Remodeling, Myocardial Stiffness, and Endoplasmic Reticulum: Mitochondrial Calcium Homeostasis in Diastolic and Systolic Heart Failure.
A. H. Chaanine, R. E. Gordon, E. Kohlbrenner, L. Benard, D. Jeong, and R. J. Hajjar (2013)
Circ Heart Fail 6, 572-583
   Abstract »    Full Text »    PDF »
Calcium release microdomains and mitochondria.
M. Kohlhaas and C. Maack (2013)
Cardiovasc Res 98, 259-268
   Abstract »    Full Text »    PDF »
The Mitochondrial Calcium Uniporter (MCU): Molecular Identity and Physiological Roles.
M. Patron, A. Raffaello, V. Granatiero, A. Tosatto, G. Merli, D. De Stefani, L. Wright, G. Pallafacchina, A. Terrin, C. Mammucari, et al. (2013)
J. Biol. Chem. 288, 10750-10758
   Abstract »    Full Text »    PDF »
VDAC: old protein with new roles in diabetes.
K. Sasaki, R. Donthamsetty, M. Heldak, Y.-E. Cho, B. T. Scott, and A. Makino (2012)
Am J Physiol Cell Physiol 303, C1055-C1060
   Abstract »    Full Text »    PDF »
Physiological Roles of the Permeability Transition Pore.
C. Brenner and M. Moulin (2012)
Circ. Res. 111, 1237-1247
   Abstract »    Full Text »    PDF »
Molecular Identity and Functional Properties of the Mitochondrial Na+/Ca2+ Exchanger.
R. Palty, M. Hershfinkel, and I. Sekler (2012)
J. Biol. Chem. 287, 31650-31657
   Abstract »    Full Text »    PDF »
{alpha}-Synuclein Controls Mitochondrial Calcium Homeostasis by Enhancing Endoplasmic Reticulum-Mitochondria Interactions.
T. Cali, D. Ottolini, A. Negro, and M. Brini (2012)
J. Biol. Chem. 287, 17914-17929
   Abstract »    Full Text »    PDF »
VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis.
K. J. De Vos, G. M. Morotz, R. Stoica, E. L. Tudor, K.-F. Lau, S. Ackerley, A. Warley, C. E. Shaw, and C. C. J. Miller (2012)
Hum. Mol. Genet. 21, 1299-1311
   Abstract »    Full Text »    PDF »
The Hepatitis B Virus X Protein Elevates Cytosolic Calcium Signals by Modulating Mitochondrial Calcium Uptake.
B. Yang and M. J. Bouchard (2012)
J. Virol. 86, 313-327
   Abstract »    Full Text »    PDF »
Alignment of sarcoplasmic reticulum-mitochondrial junctions with mitochondrial contact points.
C. Garcia-Perez, T. G. Schneider, G. Hajnoczky, and G. Csordas (2011)
Am J Physiol Heart Circ Physiol 301, H1907-H1915
   Abstract »    Full Text »    PDF »
The BH4 domain of Bcl-2 inhibits ER calcium release and apoptosis by binding the regulatory and coupling domain of the IP3 receptor.
Y.-P. Rong, G. Bultynck, A. S. Aromolaran, F. Zhong, J. B. Parys, H. De Smedt, G. A. Mignery, H. L. Roderick, M. D. Bootman, and C. W. Distelhorst (2009)
PNAS 106, 14397-14402
   Abstract »    Full Text »    PDF »
Intramitochondrial calcium regulation by the FHIT gene product sensitizes to apoptosis.
A. Rimessi, S. Marchi, C. Fotino, A. Romagnoli, K. Huebner, C. M. Croce, P. Pinton, and R. Rizzuto (2009)
PNAS 106, 12753-12758
   Abstract »    Full Text »    PDF »
Poly(ADP-ribose) Catabolism Triggers AMP-dependent Mitochondrial Energy Failure.
L. Formentini, A. Macchiarulo, G. Cipriani, E. Camaioni, E. Rapizzi, R. Pellicciari, F. Moroni, and A. Chiarugi (2009)
J. Biol. Chem. 284, 17668-17676
   Abstract »    Full Text »    PDF »
Voltage-dependent anion channel 1 is involved in endostatin-induced endothelial cell apoptosis.
S. Yuan, Y. Fu, X. Wang, H. Shi, Y. Huang, X. Song, L. Li, N. Song, and Y. Luo (2008)
FASEB J 22, 2809-2820
   Abstract »    Full Text »    PDF »
Mitochondria: The Hub of Cellular Ca2+ Signaling.
G. Szabadkai and M. R. Duchen (2008)
Physiology 23, 84-94
   Abstract »    Full Text »    PDF »
Reversible interactions between smooth domains of the endoplasmic reticulum and mitochondria are regulated by physiological cytosolic Ca2+ levels.
J. G. Goetz, H. Genty, P. St-Pierre, T. Dang, B. Joshi, R. Sauve, W. Vogl, and I. R. Nabi (2007)
J. Cell Sci. 120, 3553-3564
   Abstract »    Full Text »    PDF »
ER-Mitochondria Communication. How Privileged?.
C. Franzini-Armstrong (2007)
Physiology 22, 261-268
   Abstract »    Full Text »    PDF »
Increased longevity and refractoriness to Ca2+-dependent neurodegeneration in Surf1 knockout mice.
C. Dell'Agnello, S. Leo, A. Agostino, G. Szabadkai, C. Tiveron, A. Zulian, A. Prelle, P. Roubertoux, R. Rizzuto, and M. Zeviani (2007)
Hum. Mol. Genet. 16, 431-444
   Abstract »    Full Text »    PDF »
Mitochondrial Transporters as Novel Targets for Intracellular Calcium Signaling.
J. Satrustegui, B. Pardo, and A. del Arco (2007)
Physiol Rev 87, 29-67
   Abstract »    Full Text »    PDF »
Mitochondrial Membrane Permeabilization in Cell Death.
G. Kroemer, L. Galluzzi, and C. Brenner (2007)
Physiol Rev 87, 99-163
   Abstract »    Full Text »    PDF »
Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels.
G. Szabadkai, K. Bianchi, P. Varnai, D. De Stefani, M. R. Wieckowski, D. Cavagna, A. I. Nagy, T. Balla, and R. Rizzuto (2006)
J. Cell Biol. 175, 901-911
   Abstract »    Full Text »    PDF »
Structural and functional features and significance of the physical linkage between ER and mitochondria.
G. Csordas, C. Renken, P. Varnai, L. Walter, D. Weaver, K. F. Buttle, T. Balla, C. A. Mannella, and G. Hajnoczky (2006)
J. Cell Biol. 174, 915-921
   Abstract »    Full Text »    PDF »
Ca2+-dependent Control of the Permeability Properties of the Mitochondrial Outer Membrane and Voltage-dependent Anion-selective Channel (VDAC).
G. Bathori, G. Csordas, C. Garcia-Perez, E. Davies, and G. Hajnoczky (2006)
J. Biol. Chem. 281, 17347-17358
   Abstract »    Full Text »    PDF »
Nuclear Poly(ADP-ribose) Polymerase-1 Rapidly Triggers Mitochondrial Dysfunction.
G. Cipriani, E. Rapizzi, A. Vannacci, R. Rizzuto, F. Moroni, and A. Chiarugi (2005)
J. Biol. Chem. 280, 17227-17234
   Abstract »    Full Text »    PDF »
Neurotoxic Calcium Transfer from Endoplasmic Reticulum to Mitochondria Is Regulated by Cyclin-Dependent Kinase 5-Dependent Phosphorylation of Tau.
F. Darios, M.-P. Muriel, M. E. Khondiker, A. Brice, and M. Ruberg (2005)
J. Neurosci. 25, 4159-4168
   Abstract »    Full Text »    PDF »
[Ca2+]i Signaling between Mitochondria and Endoplasmic Reticulum in Neurons Is Regulated by Microtubules: FROM MITOCHONDRIAL PERMEABILITY TRANSITION PORE TO Ca2+-INDUCED Ca2+ RELEASE.
S. L. Mironov, M. V. Ivannikov, and M. Johansson (2005)
J. Biol. Chem. 280, 715-721
   Abstract »    Full Text »    PDF »
Inhibition of Mitochondrial Na+-Ca2+ Exchange Restores Agonist-induced ATP Production and Ca2+ Handling in Human Complex I Deficiency.
H.-J. Visch, G. A. Rutter, W. J. H. Koopman, J. B. Koenderink, S. Verkaart, T. de Groot, A. Varadi, K. J. Mitchell, L. P. van den Heuvel, J. A. M. Smeitink, et al. (2004)
J. Biol. Chem. 279, 40328-40336
   Abstract »    Full Text »    PDF »
Critical Upstream Signals of Cytochrome c Release Induced by a Novel Bcl-2 Inhibitor.
J. An, Y. Chen, and Z. Huang (2004)
J. Biol. Chem. 279, 19133-19140
   Abstract »    Full Text »    PDF »
The Coxsackievirus 2B Protein Suppresses Apoptotic Host Cell Responses by Manipulating Intracellular Ca2+ Homeostasis.
M. Campanella, A. S. de Jong, K. W. H. Lanke, W. J. G. Melchers, P. H. G. M. Willems, P. Pinton, R. Rizzuto, and F. J. M. van Kuppeveld (2004)
J. Biol. Chem. 279, 18440-18450
   Abstract »    Full Text »    PDF »
Control of Aldosterone Secretion: A Model for Convergence in Cellular Signaling Pathways.
A. SPAT and L. HUNYADY (2004)
Physiol Rev 84, 489-539
   Abstract »    Full Text »    PDF »
Bcl-2 overexpression corrects mitochondrial defects and ameliorates inherited desmin null cardiomyopathy.
N. Weisleder, G. E. Taffet, and Y. Capetanaki (2004)
PNAS 101, 769-774
   Abstract »    Full Text »    PDF »
Flirting in Little Space: The ER/Mitochondria Ca2+ Liaison.
R. Rizzuto, M. R. Duchen, and T. Pozzan (2004)
Sci. STKE 2004, re1
   Abstract »    Full Text »    PDF »
The Voltage-dependent Anion Channel Is the Target for a New Class of Inhibitors of the Mitochondrial Permeability Transition Pore.
A. M. Cesura, E. Pinard, R. Schubenel, V. Goetschy, A. Friedlein, H. Langen, P. Polcic, M. A. Forte, P. Bernardi, and J. A. Kemp (2003)
J. Biol. Chem. 278, 49812-49818
   Abstract »    Full Text »    PDF »
Mitochondrial Regulation of Intracellular Ca2+ Signaling: More Than Just Simple Ca2+ Buffers.
A. B. Parekh (2003)
Physiology 18, 252-256
   Abstract »    Full Text »    PDF »
Mitochondrial Ca2+ Uptake Requires Sustained Ca2+ Release from the Endoplasmic Reticulum.
G. Szabadkai, A. M. Simoni, and R. Rizzuto (2003)
J. Biol. Chem. 278, 15153-15161
   Abstract »    Full Text »    PDF »
CELL BIOLOGY: Apoptosis--the Calcium Connection.
N. Demaurex and C. Distelhorst (2003)
Science 300, 65-67
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882