Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Cell Biol. 159 (4): 637-648

Copyright © 2002 by the Rockefeller University Press.


Article

A caspase cleavage fragment of p115 induces fragmentation of the Golgi apparatus and apoptosis

Raymond Chiu1, Leonid Novikov1, Shaeri Mukherjee1, and Dennis Shields1,2

1 Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
2 Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461

Address correspondence to Dennis Shields, Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461. Tel.: (718) 430-2653. Fax: (718) 430-8567. E-mail: shields{at}aecom.yu.edu

Abstract: In mammalian cells, the Golgi apparatus undergoes extensive fragmentation during apoptosis. p115 is a key vesicle tethering protein required for maintaining the structural organization of the Golgi apparatus. Here, we demonstrate that p115 was cleaved during apoptosis by caspases 3 and 8. Compared with control cells expressing native p115, those expressing a cleavage-resistant form of p115 delayed Golgi fragmentation during apoptosis. Expression of cDNAs encoding full-length or an NH2-terminal caspase cleavage fragment of p115 had no effect on Golgi morphology. In contrast, expression of the COOH-terminal caspase cleavage product of p115 itself caused Golgi fragmentation. Furthermore, this fragment translocated to the nucleus and its expression was sufficient to induce apoptosis. Most significantly, in vivo expression of the COOH-terminal fragment in the presence of caspase inhibitors, or upon coexpression with a cleavage-resistant mutant of p115, showed that p115 degradation plays a key role in amplifying the apoptotic response independently of Golgi fragmentation.

Key Words: Golgi apparatus; vesicular transport factor p115; apoptosis; caspases; Golgi matrix protein


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
A{beta}-induced Golgi fragmentation in Alzheimer's disease enhances A{beta} production.
G. Joshi, Y. Chi, Z. Huang, and Y. Wang (2014)
PNAS 111, E1230-E1239
   Abstract »    Full Text »    PDF »
Toxoplasma gondii salvages sphingolipids from the host Golgi through the rerouting of selected Rab vesicles to the parasitophorous vacuole.
J. D. Romano, S. Sonda, E. Bergbower, M. E. Smith, and I. Coppens (2013)
Mol. Biol. Cell 24, 1974-1995
   Abstract »    Full Text »    PDF »
Cellular stress response pathways and ageing: intricate molecular relationships.
N. Kourtis and N. Tavernarakis (2011)
EMBO J. 30, 2520-2531
   Abstract »    Full Text »    PDF »
The Golgi Protein p115 Associates with {gamma}-Tubulin and Plays a Role in Golgi Structure and Mitosis Progression.
A. E. Radulescu, S. Mukherjee, and D. Shields (2011)
J. Biol. Chem. 286, 21915-21926
   Abstract »    Full Text »    PDF »
The Golgin Coiled-Coil Proteins of the Golgi Apparatus.
S. Munro (2011)
Cold Spring Harb Perspect Biol 3, a005256
   Abstract »    Full Text »    PDF »
Golgi Positioning.
S. Yadav and A. D. Linstedt (2011)
Cold Spring Harb Perspect Biol 3, a005322
   Abstract »    Full Text »    PDF »
Tethering Function of the Caspase Cleavage Fragment of Golgi Protein p115 Promotes Apoptosis via a p53-dependent Pathway.
P. C. How and D. Shields (2011)
J. Biol. Chem. 286, 8565-8576
   Abstract »    Full Text »    PDF »
Carminomycin I Is an Apoptosis Inducer That Targets the Golgi Complex in Clear Cell Renal Carcinoma Cells.
G. M. Woldemichael, T. J. Turbyville, W. M. Linehan, and J. B. McMahon (2011)
Cancer Res. 71, 134-142
   Abstract »    Full Text »    PDF »
A testis-specific regulator of complex and hybrid N-glycan synthesis.
H.-H. Huang and P. Stanley (2010)
J. Cell Biol. 190, 893-910
   Abstract »    Full Text »    PDF »
The Polycomb Group Protein Bmi-1 Is Essential for the Growth of Multiple Myeloma Cells.
Z. Jagani, D. Wiederschain, A. Loo, D. He, R. Mosher, P. Fordjour, J. Monahan, M. Morrissey, Y.-M. Yao, C. Lengauer, et al. (2010)
Cancer Res. 70, 5528-5538
   Abstract »    Full Text »    PDF »
Mutational and functional analysis of Large in a novel CHO glycosylation mutant.
J. T Aguilan, S. Sundaram, E. Nieves, and P. Stanley (2009)
Glycobiology 19, 971-986
   Abstract »    Full Text »    PDF »
Phosphorylation does not prompt, nor prevent, the formation of {alpha}-synuclein toxic species in a rat model of Parkinson's disease.
S. Azeredo da Silveira, B. L. Schneider, C. Cifuentes-Diaz, D. Sage, T. Abbas-Terki, T. Iwatsubo, M. Unser, and P. Aebischer (2009)
Hum. Mol. Genet. 18, 872-887
   Abstract »    Full Text »    PDF »
Nuclear Import Is Required for the Pro-apoptotic Function of the Golgi Protein p115.
S. Mukherjee and D. Shields (2009)
J. Biol. Chem. 284, 1709-1717
   Abstract »    Full Text »    PDF »
Novel Genetic Tools Reveal Cdk5's Major Role in Golgi Fragmentation in Alzheimer's Disease.
K.-H. Sun, Y. de Pablo, F. Vincent, E. O. Johnson, A. K. Chavers, and K. Shah (2008)
Mol. Biol. Cell 19, 3052-3069
   Abstract »    Full Text »    PDF »
Identification of a Redox-sensitive Cysteine in GCP60 That Regulates Its Interaction with Golgin-160.
J. I. Sbodio and C. E. Machamer (2007)
J. Biol. Chem. 282, 29874-29881
   Abstract »    Full Text »    PDF »
Identification and Characterization of Small Molecules That Inhibit Intracellular Toxin Transport.
J. B. Saenz, T. A. Doggett, and D. B. Haslam (2007)
Infect. Immun. 75, 4552-4561
   Abstract »    Full Text »    PDF »
Pulmonary arterial hypertension: a disease of tethers, SNAREs and SNAPs?.
P. B. Sehgal and S. Mukhopadhyay (2007)
Am J Physiol Heart Circ Physiol 293, H77-H85
   Abstract »    Full Text »    PDF »
Dysfunction of Golgi tethers, SNAREs, and SNAPs in monocrotaline-induced pulmonary hypertension.
P. B. Sehgal, S. Mukhopadhyay, F. Xu, K. Patel, and M. Shah (2007)
Am J Physiol Lung Cell Mol Physiol 292, L1526-L1542
   Abstract »    Full Text »    PDF »
GCP60 Preferentially Interacts with a Caspase-generated Golgin-160 Fragment.
J. I. Sbodio, S. W. Hicks, D. Simon, and C. E. Machamer (2006)
J. Biol. Chem. 281, 27924-27931
   Abstract »    Full Text »    PDF »
Myosin VI Is a Mediator of the p53-Dependent Cell Survival Pathway.
E. J. Jung, G. Liu, W. Zhou, and X. Chen (2006)
Mol. Cell. Biol. 26, 2175-2186
   Abstract »    Full Text »    PDF »
GMx33 Associates with the Trans-Golgi Matrix in a Dynamic Manner and Sorts within Tubules Exiting the Golgi.
C. M. Snyder, G. A. Mardones, M. S. Ladinsky, and K. E. Howell (2006)
Mol. Biol. Cell 17, 511-524
   Abstract »    Full Text »    PDF »
Active relocation of chromatin and endoplasmic reticulum into blebs in late apoptotic cells.
J. D. Lane, V. J. Allan, and P. G. Woodman (2005)
J. Cell Sci. 118, 4059-4071
   Abstract »    Full Text »    PDF »
The Canonical Intrinsic Mitochondrial Death Pathway Has a Non-apoptotic Role in Signaling Lens Cell Differentiation.
G. F. Weber and A. S. Menko (2005)
J. Biol. Chem. 280, 22135-22145
   Abstract »    Full Text »    PDF »
Caspase-resistant Golgin-160 Disrupts Apoptosis Induced by Secretory Pathway Stress and Ligation of Death Receptors.
R. S. Maag, M. Mancini, A. Rosen, and C. E. Machamer (2005)
Mol. Biol. Cell 16, 3019-3027
   Abstract »    Full Text »    PDF »
Mapping the Functional Domains of the Golgi Stacking Factor GRASP65.
Y. Wang, A. Satoh, and G. Warren (2005)
J. Biol. Chem. 280, 4921-4928
   Abstract »    Full Text »    PDF »
The COG and COPI Complexes Interact to Control the Abundance of GEARs, a Subset of Golgi Integral Membrane Proteins.
T. Oka, D. Ungar, F. M. Hughson, and M. Krieger (2004)
Mol. Biol. Cell 15, 2423-2435
   Abstract »    Full Text »    PDF »
Proteolytic Processing and Translation Initiation: TWO INDEPENDENT MECHANISMS FOR THE EXPRESSION OF THE SENDAI VIRUS Y PROTEINS.
S. de Breyne, R. S. Monney, and J. Curran (2004)
J. Biol. Chem. 279, 16571-16580
   Abstract »    Full Text »    PDF »
Caspase-mediated cleavage of syntaxin 5 and giantin accompanies inhibition of secretory traffic during apoptosis.
M. Lowe, J. D. Lane, P. G. Woodman, and V. J. Allan (2004)
J. Cell Sci. 117, 1139-1150
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882