Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Cell Biol. 159 (5): 739-745

Copyright © 2002 by the Rockefeller University Press.


Report

A novel Apaf-1–independent putative caspase-2 activation complex

Stuart H. Read1, Belinda C. Baliga1, Paul G. Ekert2, David L. Vaux2, and Sharad Kumar1,3

1 Hanson Institute, e Road, Adelaide, Australia 5000
2 Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia 3050
3 Department of Medicine, Adelaide University, Adelaide, Australia 5005

Address correspondence to Sharad Kumar, Hanson Institute, P.O. Box 14, Rundle Mall, Adelaide, Australia 5000. Tel.: 61-8-8222-3738. Fax: 61-8-8222-3139. E-mail: sharad.kumar{at}imvs.sa.gov.au

Abstract: CVaspase activation is a key event in apoptosis execution. In stress-induced apoptosis, the mitochondrial pathway of caspase activation is believed to be of central importance. In this pathway, cytochrome c released from mitochondria facilitates the formation of an Apaf-1 apoptosome that recruits and activates caspase-9. Recent data indicate that in some cells caspase-9 may not be the initiator caspase in stress-mediated apoptosis because caspase-2 is required upstream of mitochondria for the release of cytochrome c and other apoptogenic factors. To determine how caspase-2 is activated, we have studied the formation of a complex that mediates caspase-2 activation. Using gel filtration analysis of cell lysates, we show that caspase-2 is spontaneously recruited to a large protein complex independent of cytochrome c and Apaf-1 and that recruitment of caspase-2 to this complex is sufficient to mediate its activation. Using substrate-binding assays, we also provide the first evidence that caspase-2 activation may occur without processing of the precursor molecule. Our data are consistent with a model where caspase-2 activation occurs by oligomerization, independent of the Apaf-1 apoptosome.

Key Words: apoptosis; caspase activation; apoptosome; caspase-9; initiator caspase


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Cellular Mechanisms Controlling Caspase Activation and Function.
A. B. Parrish, C. D. Freel, and S. Kornbluth (2013)
Cold Spring Harb Perspect Biol 5, a008672
   Abstract »    Full Text »    PDF »
Caspase-2 at a glance.
L. L. Fava, F. J. Bock, S. Geley, and A. Villunger (2012)
J. Cell Sci. 125, 5911-5915
   Full Text »    PDF »
Caspase-2 is an initiator caspase responsible for pore-forming toxin-mediated apoptosis.
G. Imre, J. Heering, A.-N. Takeda, M. Husmann, B. Thiede, D. M. zu Heringdorf, D. R. Green, F. G. van der Goot, B. Sinha, V. Dotsch, et al. (2012)
EMBO J. 31, 2615-2628
   Abstract »    Full Text »    PDF »
Cutting Edge: The "Death" Adaptor CRADD/RAIDD Targets BCL10 and Suppresses Agonist-Induced Cytokine Expression in T Lymphocytes.
Q. Lin, Y. Liu, D. J. Moore, S. K. Elizer, R. A. Veach, J. Hawiger, and H. E. Ruley (2012)
J. Immunol. 188, 2493-2497
   Abstract »    Full Text »    PDF »
Apoptosis and cancer: mutations within caspase genes.
S Ghavami, M Hashemi, S R Ande, B Yeganeh, W Xiao, M Eshraghi, C J Bus, K Kadkhoda, E Wiechec, A J Halayko, et al. (2009)
J. Med. Genet. 46, 497-510
   Abstract »    Full Text »    PDF »
Caspase-2 activation in the absence of PIDDosome formation.
C. Manzl, G. Krumschnabel, F. Bock, B. Sohm, V. Labi, F. Baumgartner, E. Logette, J. Tschopp, and A. Villunger (2009)
J. Cell Biol. 185, 291-303
   Abstract »    Full Text »    PDF »
c-Myc and Caspase-2 Are Involved in Activating Bax during Cytotoxic Drug-induced Apoptosis.
X. Cao, R. L. Bennett, and W. S. May (2008)
J. Biol. Chem. 283, 14490-14496
   Abstract »    Full Text »    PDF »
A role for caspase 2 and PIDD in the process of p53-mediated apoptosis.
N. Baptiste-Okoh, A. M. Barsotti, and C. Prives (2008)
PNAS 105, 1937-1942
   Abstract »    Full Text »    PDF »
GSK-3beta acts downstream of PP2A and the PI 3-kinase-Akt pathway, and upstream of caspase-2 in ceramide-induced mitochondrial apoptosis.
C.-F. Lin, C.-L. Chen, C.-W. Chiang, M.-S. Jan, W.-C. Huang, and Y.-S. Lin (2007)
J. Cell Sci. 120, 2935-2943
   Abstract »    Full Text »    PDF »
Role of Cytochrome c in Apoptosis: Increased Sensitivity to Tumor Necrosis Factor Alpha Is Associated with Respiratory Defects but Not with Lack of Cytochrome c Release.
U. D. Vempati, F. Diaz, A. Barrientos, S. Narisawa, A. M. Mian, J. L. Millan, L. H. Boise, and C. T. Moraes (2007)
Mol. Cell. Biol. 27, 1771-1783
   Abstract »    Full Text »    PDF »
Suppression of Endoplasmic Reticulum Stress-induced Caspase Activation and Cell Death by the Overexpression of Bcl-xL or Bcl-2.
Y. Murakami, E. Aizu-Yokota, Y. Sonoda, S. Ohta, and T. Kasahara (2007)
J. Biochem. 141, 401-410
   Abstract »    Full Text »    PDF »
Autoproteolysis of PIDD marks the bifurcation between pro-death caspase-2 and pro-survival NF-{kappa}B pathway.
A. Tinel, S. Janssens, S. Lippens, S. Cuenin, E. Logette, B. Jaccard, M. Quadroni, and J. Tschopp (2007)
EMBO J. 26, 197-208
   Abstract »    Full Text »    PDF »
Loss of Caspase-9 Reveals Its Essential Role for Caspase-2 Activation and Mitochondrial Membrane Depolarization.
A. K. Samraj, D. Sohn, K. Schulze-Osthoff, and I. Schmitz (2007)
Mol. Biol. Cell 18, 84-93
   Abstract »    Full Text »    PDF »
Osmotic Stress Activates the TAK1-JNK Pathway While Blocking TAK1-mediated NF-{kappa}B Activation: TAO2 REGULATES TAK1 PATHWAYS.
W.-C. HuangFu, E. Omori, S. Akira, K. Matsumoto, and J. Ninomiya-Tsuji (2006)
J. Biol. Chem. 281, 28802-28810
   Abstract »    Full Text »    PDF »
Heat Shock Induces Apoptosis Independently of Any Known Initiator Caspase-activating Complex.
R. S. Milleron and S. B. Bratton (2006)
J. Biol. Chem. 281, 16991-17000
   Abstract »    Full Text »    PDF »
Caspase-2-induced Apoptosis Requires Bid Cleavage: A Physiological Role for Bid in Heat Shock-induced Death.
C. Bonzon, L. Bouchier-Hayes, L. J. Pagliari, D. R. Green, and D. D. Newmeyer (2006)
Mol. Biol. Cell 17, 2150-2157
   Abstract »    Full Text »    PDF »
PS-341 (Bortezomib) Induces Lysosomal Cathepsin B Release and a Caspase-2-dependent Mitochondrial Permeabilization and Apoptosis in Human Pancreatic Cancer Cells.
B. H. Y. Yeung, D.-C. Huang, and F. A. Sinicrope (2006)
J. Biol. Chem. 281, 11923-11932
   Abstract »    Full Text »    PDF »
Targeting endoplasmic reticulum protein transport: a novel strategy to kill malignant B cells and overcome fludarabine resistance in CLL.
J. S. Carew, S. T. Nawrocki, Y. V. Krupnik, K. Dunner Jr, D. J. McConkey, M. J. Keating, and P. Huang (2006)
Blood 107, 222-231
   Abstract »    Full Text »    PDF »
Bcl-2 Rescues Ceramide- and Etoposide-induced Mitochondrial Apoptosis through Blockage of Caspase-2 Activation.
C.-F. Lin, C.-L. Chen, W.-T. Chang, M.-S. Jan, L.-J. Hsu, R.-H. Wu, Y.-T. Fang, M.-J. Tang, W.-C. Chang, and Y.-S. Lin (2005)
J. Biol. Chem. 280, 23758-23765
   Abstract »    Full Text »    PDF »
Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines.
J. S. Mader, J. Salsman, D. M. Conrad, and D. W. Hoskin (2005)
Mol. Cancer Ther. 4, 612-624
   Abstract »    Full Text »    PDF »
Rapamycin and UCN-01 synergistically induce apoptosis in human leukemia cells through a process that is regulated by the Raf-1/MEK/ERK, Akt, and JNK signal transduction pathways.
M. Hahn, W. Li, C. Yu, M. Rahmani, P. Dent, and S. Grant (2005)
Mol. Cancer Ther. 4, 457-470
   Abstract »    Full Text »    PDF »
A Novel Caspase-2 Complex Containing TRAF2 and RIP1.
M. Lamkanfi, K. D'hondt, L. Vande Walle, M. van Gurp, G. Denecker, J. Demeulemeester, M. Kalai, W. Declercq, X. Saelens, and P. Vandenabeele (2005)
J. Biol. Chem. 280, 6923-6932
   Abstract »    Full Text »    PDF »
Hsp72 Inhibits Apoptosis Upstream of the Mitochondria and Not through Interactions with Apaf-1.
R. Steel, J. P. Doherty, K. Buzzard, N. Clemons, C. J. Hawkins, and R. L. Anderson (2004)
J. Biol. Chem. 279, 51490-51499
   Abstract »    Full Text »    PDF »
Caspase-2 Permeabilizes the Outer Mitochondrial Membrane and Disrupts the Binding of Cytochrome c to Anionic Phospholipids.
M. Enoksson, J. D. Robertson, V. Gogvadze, P. Bu, A. Kropotov, B. Zhivotovsky, and S. Orrenius (2004)
J. Biol. Chem. 279, 49575-49578
   Abstract »    Full Text »    PDF »
Sequential Caspase-2 and Caspase-8 Activation Upstream of Mitochondria during Ceramideand Etoposide-induced Apoptosis.
C.-F. Lin, C.-L. Chen, W.-T. Chang, M.-S. Jan, L.-J. Hsu, R.-H. Wu, M.-J. Tang, W.-C. Chang, and Y.-S. Lin (2004)
J. Biol. Chem. 279, 40755-40761
   Abstract »    Full Text »    PDF »
Requirement for Aspartate-cleaved Bid in Apoptosis Signaling by DNA-damaging Anti-cancer Regimens.
A. B. Werner, S. W. G. Tait, E. de Vries, E. Eldering, and J. Borst (2004)
J. Biol. Chem. 279, 28771-28780
   Abstract »    Full Text »    PDF »
Proteolysis of the Mismatch Repair Protein MLH1 by Caspase-3 Promotes DNA Damage-induced Apoptosis.
F. Chen, O. K. Arseven, and V. L. Cryns (2004)
J. Biol. Chem. 279, 27542-27548
   Abstract »    Full Text »    PDF »
Processed caspase-2 can induce mitochondria-mediated apoptosis independently of its enzymatic activity.
J. D. Robertson, V. Gogvadze, A. Kropotov, H. Vakifahmetoglu, B. Zhivotovsky, and S. Orrenius (2004)
EMBO Rep. 5, 643-648
   Abstract »    Full Text »    PDF »
The PIDDosome, a Protein Complex Implicated in Activation of Caspase-2 in Response to Genotoxic Stress.
A. Tinel and J. Tschopp (2004)
Science 304, 843-846
   Abstract »    Full Text »    PDF »
The NRIF3 Family of Transcriptional Coregulators Induces Rapid and Profound Apoptosis in Breast Cancer Cells.
D. Li, S. Das, T. Yamada, and H. H. Samuels (2004)
Mol. Cell. Biol. 24, 3838-3848
   Abstract »    Full Text »    PDF »
Dimerization and Processing of Procaspase-9 by Redox Stress in Mitochondria.
I. Katoh, Y. Tomimori, Y. Ikawa, and S.-i. Kurata (2004)
J. Biol. Chem. 279, 15515-15523
   Abstract »    Full Text »    PDF »
The Organellular Chloride Channel Protein CLIC4/mtCLIC Translocates to the Nucleus in Response to Cellular Stress and Accelerates Apoptosis.
K. S. Suh, M. Mutoh, K. Nagashima, E. Fernandez-Salas, L. E. Edwards, D. D. Hayes, J. M. Crutchley, K. G. Marin, R. A. Dumont, J. M. Levy, et al. (2004)
J. Biol. Chem. 279, 4632-4641
   Abstract »    Full Text »    PDF »
GDNF-deprived sympathetic neurons die via a novel nonmitochondrial pathway.
L.-Y. Yu, E. Jokitalo, Y.-F. Sun, P. Mehlen, D. Lindholm, M. Saarma, and U. Arumae (2003)
J. Cell Biol. 163, 987-997
   Abstract »    Full Text »    PDF »
Alternative Programs of Cell Death in Developing Retinal Tissue.
C. A. Guimaraes, M. Benchimol, G. P. Amarante-Mendes, and R. Linden (2003)
J. Biol. Chem. 278, 41938-41946
   Abstract »    Full Text »    PDF »
Crystal Structure of Caspase-2, Apical Initiator of the Intrinsic Apoptotic Pathway.
A. Schweizer, C. Briand, and M. G. Grutter (2003)
J. Biol. Chem. 278, 42441-42447
   Abstract »    Full Text »    PDF »
Ways of dying: multiple pathways to apoptosis.
J. M. Adams (2003)
Genes & Dev. 17, 2481-2495
   Full Text »    PDF »
Apoptosome-independent Pathway for Apoptosis: BIOCHEMICAL ANALYSIS OF APAF-1 DEFECTS AND BIOLOGICAL OUTCOMES.
C. A. Belmokhtar, J. Hillion, C. Dudognon, S. Fiorentino, M. Flexor, M. Lanotte, and E. Segal-Bendirdjian (2003)
J. Biol. Chem. 278, 29571-29580
   Abstract »    Full Text »    PDF »
Caspase-Independent Photoreceptor Apoptosis in Mouse Models of Retinal Degeneration.
F. Doonan, M. Donovan, and T. G. Cotter (2003)
J. Neurosci. 23, 5723-5731
   Abstract »    Full Text »    PDF »
Mitochondrially Localized Active Caspase-9 and Caspase-3 Result Mostly from Translocation from the Cytosol and Partly from Caspase-mediated Activation in the Organelle. LACK OF EVIDENCE FOR Apaf-1-MEDIATED PROCASPASE-9 ACTIVATION IN THE MITOCHONDRIA.
D. Chandra and D. G. Tang (2003)
J. Biol. Chem. 278, 17408-17420
   Abstract »    Full Text »    PDF »
Role of Caspases, Bid, and p53 in the Apoptotic Response Triggered by Histone Deacetylase Inhibitors Trichostatin-A (TSA) and Suberoylanilide Hydroxamic Acid (SAHA).
C. Henderson, M. Mizzau, G. Paroni, R. Maestro, C. Schneider, and C. Brancolini (2003)
J. Biol. Chem. 278, 12579-12589
   Abstract »    Full Text »    PDF »
Cell Stress-Associated Caspase Activation: Intrinsically Complex?.
E. M. Creagh and S. J. Martin (2003)
Sci. STKE 2003, pe11
   Abstract »    Full Text »    PDF »
Role of Prodomain in Importin-mediated Nuclear Localization and Activation of Caspase-2.
B. C. Baliga, P. A. Colussi, S. H. Read, M. M. Dias, D. A. Jans, and S. Kumar (2003)
J. Biol. Chem. 278, 4899-4905
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882