Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Cell Biol. 160 (5): 781-791

Copyright © 2003 by the Rockefeller University Press.


Plasminogen activator inhibitor-1 detaches cells from extracellular matrices by inactivating integrins

Ralf-Peter Czekay, Kathleen Aertgeerts, Scott A. Curriden, and David J. Loskutoff

The Scripps Research Institute, Department of Cell Biology, Division of Vascular Biology, 10550 N. Torrey Pines Road, VB-3, La Jolla, CA 92037

Address correspondence to David J. Loskutoff, The Scripps Research Institute, Dept. of Cell Biology, Div. of Vascular Biology, 10550 N. Torrey Pines Rd., VB-3, La Jolla, CA 92037. Tel.: (858) 784-7125. Fax: (858) 784-7353. E-mail: loskutof{at}

Abstract: The binding of urokinase plaminogen activator (uPA) to its cell surface receptor (uPAR; CD87) promotes cell adhesion by increasing the affinity of the receptor for both vitronectin (VN) and integrins. We provide evidence that plasminogen activator inhibitor (PAI)-1 can detach cells by disrupting uPAR–VN and integrin–VN interactions and that it does so by binding to the uPA present in uPA–uPAR–integrin complexes on the cell surface. The detached cells cannot reattach to VN unless their surface integrins are first activated by treatment with MnCl2. Immunoprecipitation and subcellular fractionation experiments reveal that PAI-1 treatment triggers deactivation and disengagement of uPA–uPAR–integrin complexes and their endocytic clearance by the low density lipoprotein receptor–related protein. Transfection experiments demonstrate that efficient cell detachment by PAI-1 requires an excess of matrix-engaged uPA–uPAR–integrin complexes over free engaged integrins and that changes in this ratio alter the efficacy of PAI-1. Together, these results suggest a VN-independent, uPA–uPAR-dependent mechanism by which PAI-1 induces cell detachment. This pathway may represent a general mechanism, since PAI-1 also can detach cells from fibronectin and type-1 collagen. This novel "deadhesive" activity of PAI-1 toward a variety of cells growing on different extracellular matrices may begin to explain why high PAI-1 levels often are associated with a poor prognosis in human metastatic disease.

Key Words: uPAR (CD87); vitronectin; fibronectin; integrin deactivation; endocytosis

Urokinase Plasminogen Activator Is a Central Regulator of Macrophage Three-Dimensional Invasion, Matrix Degradation, and Adhesion.
A. J. Fleetwood, A. Achuthan, H. Schultz, A. Nansen, K. Almholt, P. Usher, and J. A. Hamilton (2014)
J. Immunol. 192, 3540-3547
   Abstract »    Full Text »    PDF »
Protumorigenic Activity of Plasminogen Activator Inhibitor-1 Through an Antiapoptotic Function.
H. Fang, V. R. Placencio, and Y. A. DeClerck (2012)
J Natl Cancer Inst 104, 1470-1484
   Abstract »    Full Text »    PDF »
uPA Binding to PAI-1 Induces Corneal Myofibroblast Differentiation on Vitronectin.
L. Wang, C. M. Ly, C.-Y. Ko, E. E. Meyers, D. A. Lawrence, and A. M. Bernstein (2012)
Invest. Ophthalmol. Vis. Sci. 53, 4765-4775
   Abstract »    Full Text »    PDF »
Influence of Plasminogen Activator Inhibitor-1 (SERPINE1) 4G/5G Polymorphism on Circulating SERPINE-1 Antigen Expression in HCC Associated with Viral Infection.
Cancer Genomics Proteomics 9, 193-198
   Abstract »    Full Text »    PDF »
MT1-MMP regulates the turnover and endocytosis of extracellular matrix fibronectin.
F. Shi and J. Sottile (2011)
J. Cell Sci. 124, 4039-4050
   Abstract »    Full Text »    PDF »
PAI-1 expression and its regulation by promoter 4G/5G polymorphism in clear cell renal cell carcinoma.
J.-W. Choi, J.-H. Lee, H. S. Park, and Y.-S. Kim (2011)
J. Clin. Pathol. 64, 893-897
   Abstract »    Full Text »    PDF »
PAI-1 is an essential component of the pulmonary host response during Pseudomonas aeruginosa pneumonia in mice.
A. Goolaerts, M. Lafargue, Y. Song, B. Miyazawa, M. Arjomandi, M. Carles, J. Roux, M. Howard, D. A. Parks, K. E. Iles, et al. (2011)
Thorax 66, 788-796
   Abstract »    Full Text »    PDF »
Transient reduction of placental angiogenesis in PAI-1-deficient mice.
S. Labied, S. Blacher, P. Carmeliet, A. Noel, F. Frankenne, J.-M. Foidart, and C. Munaut (2011)
Physiol Genomics 43, 188-198
   Abstract »    Full Text »    PDF »
ECRG2 Regulates Cell Migration/Invasion through Urokinase-type Plasmin Activator Receptor (uPAR)/{beta}1 Integrin Pathway.
X. Cheng, Z. Shen, L. Yin, S.-H. Lu, and Y. Cui (2009)
J. Biol. Chem. 284, 30897-30906
   Abstract »    Full Text »    PDF »
Genetic Link Between Cancer and Thrombosis.
C. Boccaccio and P. M. Comoglio (2009)
J. Clin. Oncol. 27, 4827-4833
   Abstract »    Full Text »    PDF »
Plasminogen Activator Inhibitor-1 (PAI-1) Facilitates Retinal Angiogenesis in a Model of Oxygen-Induced Retinopathy.
A. Basu, G. Menicucci, J. Maestas, A. Das, and P. McGuire (2009)
Invest. Ophthalmol. Vis. Sci. 50, 4974-4981
   Abstract »    Full Text »    PDF »
Recombinant Plasminogen Activator Inhibitor-1 Inhibits Intimal Hyperplasia.
J. Wu, L. Peng, G. A. McMahon, D. A. Lawrence, and W. P. Fay (2009)
Arterioscler Thromb Vasc Biol 29, 1565-1570
   Abstract »    Full Text »    PDF »
Plasminogen Activator Inhibitor-1 Regulates Integrin {alpha}v{beta}3 Expression and Autocrine Transforming Growth Factor {beta} Signaling.
B. S. Pedroja, L. E. Kang, A. O. Imas, P. Carmeliet, and A. M. Bernstein (2009)
J. Biol. Chem. 284, 20708-20717
   Abstract »    Full Text »    PDF »
The Antiangiogenic Activity of rPAI-123 Inhibits Vasa Vasorum and Growth of Atherosclerotic Plaque.
M. Drinane, J. Mollmark, L. Zagorchev, K. Moodie, B. Sun, A. Hall, S. Shipman, P. Morganelli, M. Simons, and M. J. Mulligan-Kehoe (2009)
Circ. Res. 104, 337-345
   Abstract »    Full Text »    PDF »
Signaling through urokinase and urokinase receptor in lung cancer cells requires interactions with {beta}1 integrins.
C.-H. Tang, M. L. Hill, A. N. Brumwell, H. A. Chapman, and Y. Wei (2008)
J. Cell Sci. 121, 3747-3756
   Abstract »    Full Text »    PDF »
Thrombospondin 1 binding to calreticulin-LRP1 signals resistance to anoikis.
M. A. Pallero, C. A. Elzie, J. Chen, D. F. Mosher, and J. E. Murphy-Ullrich (2008)
FASEB J 22, 3968-3979
   Abstract »    Full Text »    PDF »
Sphingosine-1-Phosphate and Interleukin-1 Independently Regulate Plasminogen Activator Inhibitor-1 and Urokinase-Type Plasminogen Activator Receptor Expression in Glioblastoma Cells: Implications for Invasiveness.
L. Bryan, B. S. Paugh, D. Kapitonov, K. M. Wilczynska, S. M. Alvarez, S. K. Singh, S. Milstien, S. Spiegel, and T. Kordula (2008)
Mol. Cancer Res. 6, 1469-1477
   Abstract »    Full Text »    PDF »
LDL Receptor-Related Protein 1: Unique Tissue-Specific Functions Revealed by Selective Gene Knockout Studies.
A. P. Lillis, L. B. Van Duyn, J. E. Murphy-Ullrich, and D. K. Strickland (2008)
Physiol Rev 88, 887-918
   Abstract »    Full Text »    PDF »
Protection from High Fat Diet-induced Increase in Ceramide in Mice Lacking Plasminogen Activator Inhibitor 1.
C. Shah, G. Yang, I. Lee, J. Bielawski, Y. A. Hannun, and F. Samad (2008)
J. Biol. Chem. 283, 13538-13548
   Abstract »    Full Text »    PDF »
PAI1 stimulates assembly of the fibronectin matrix in osteosarcoma cells through crosstalk between the {alpha}v{beta}5 and {alpha}5{beta}1 integrins.
D. Vial and P. J. McKeown-Longo (2008)
J. Cell Sci. 121, 1661-1670
   Abstract »    Full Text »    PDF »
Hypoxia and Aggressive Tumor Phenotype: Implications for Therapy and Prognosis.
P. Vaupel (2008)
Oncologist 13, 21-26
   Abstract »    Full Text »    PDF »
A Deletion Mutant of Vitronectin Lacking the Somatomedin B Domain Exhibits Residual Plasminogen Activator Inhibitor-1-binding Activity.
C. R. Schar, G. E. Blouse, K. H. Minor, and C. B. Peterson (2008)
J. Biol. Chem. 283, 10297-10309
   Abstract »    Full Text »    PDF »
Regulation of mammary parenchymal growth by the fat pad in prepubertal dairy heifers: role of inflammation-related proteins.
S. R Thorn, S. Purup, M. Vestergaard, K. Sejrsen, M. J Meyer, M. E Van Amburgh, and Y. R Boisclair (2008)
J. Endocrinol. 196, 539-546
   Abstract »    Full Text »    PDF »
EGF regulates plasminogen activator inhibitor-1 (PAI-1) by a pathway involving c-Src, PKC{delta}, and sphingosine kinase 1 in glioblastoma cells.
B. S. Paugh, S. W. Paugh, L. Bryan, D. Kapitonov, K. M. Wilczynska, S. M. Gopalan, H. Rokita, S. Milstien, S. Spiegel, and T. Kordula (2008)
FASEB J 22, 455-465
   Abstract »    Full Text »    PDF »
Cell-surface transglutaminase undergoes internalization and lysosomal degradation: an essential role for LRP1.
E. A. Zemskov, I. Mikhailenko, D. K. Strickland, and A. M. Belkin (2007)
J. Cell Sci. 120, 3188-3199
   Abstract »    Full Text »    PDF »
Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension.
E. Arciniegas, M. G. Frid, I. S. Douglas, and K. R. Stenmark (2007)
Am J Physiol Lung Cell Mol Physiol 293, L1-L8
   Abstract »    Full Text »    PDF »
Urokinase Receptor Cleavage: A Crucial Step in Fibroblast-to-Myofibroblast Differentiation.
A. M. Bernstein, S. S. Twining, D. J. Warejcka, E. Tall, and S. K. Masur (2007)
Mol. Biol. Cell 18, 2716-2727
   Abstract »    Full Text »    PDF »
Vascular Functions of the Plasminogen Activation System.
W. P. Fay, N. Garg, and M. Sunkar (2007)
Arterioscler Thromb Vasc Biol 27, 1231-1237
   Abstract »    Full Text »    PDF »
The Contributions of Integrin Affinity and Integrin-Cytoskeletal Engagement in Endothelial and Smooth Muscle Cell Adhesion to Vitronectin.
S. Stefansson, E. J. Su, S. Ishigami, J. M. Cale, Y. Gao, N. Gorlatova, and D. A. Lawrence (2007)
J. Biol. Chem. 282, 15679-15689
   Abstract »    Full Text »    PDF »
Mechanisms of TGF-{beta}1-Induced Intimal Growth: Plasminogen-Independent Activities of Plasminogen Activator Inhibitor-1 and Heterogeneous Origin of Intimal Cells.
G. Otsuka, A. Stempien-Otero, A. D. Frutkin, and D. A. Dichek (2007)
Circ. Res. 100, 1300-1307
   Abstract »    Full Text »    PDF »
Mechanism of Inactivation of Plasminogen Activator Inhibitor-1 by a Small Molecule Inhibitor.
N. V. Gorlatova, J. M. Cale, H. Elokdah, D. Li, K. Fan, M. Warnock, D. L. Crandall, and D. A. Lawrence (2007)
J. Biol. Chem. 282, 9288-9296
   Abstract »    Full Text »    PDF »
Urokinase Receptors Are Required for {alpha}5beta1 Integrin-mediated Signaling in Tumor Cells.
Y. Wei, C.-H. Tang, Y. Kim, L. Robillard, F. Zhang, M. C. Kugler, and H. A. Chapman (2007)
J. Biol. Chem. 282, 3929-3939
   Abstract »    Full Text »    PDF »
Antimetastatic activity of insulin-like growth factor binding protein-3 in lung cancer is mediated by insulin-like growth factor-independent urokinase-type plasminogen activator inhibition..
S.-H. Oh, O.-H. Lee, C. P. Schroeder, Y. W. Oh, S. Ke, H.-J. Cha, R.-W. Park, A. Onn, R. S. Herbst, C. Li, et al. (2006)
Mol. Cancer Ther. 5, 2685-2695
   Abstract »    Full Text »    PDF »
Plasminogen Activator Inhibitor-1 in Chronic Kidney Disease: Evidence and Mechanisms of Action.
A. A. Eddy and A. B. Fogo (2006)
J. Am. Soc. Nephrol. 17, 2999-3012
   Full Text »    PDF »
Involvement of the Urokinase Kringle Domain in Lipopolysaccharide-Induced Acute Lung Injury.
X.-Q. Wang, K. Bdeir, S. Yarovoi, D. B. Cines, W. Fang, and E. Abraham (2006)
J. Immunol. 177, 5550-5557
   Abstract »    Full Text »    PDF »
LRP and {alpha}vbeta3 mediate tPA activation of smooth muscle cells.
S. Akkawi, T. Nassar, M. Tarshis, D. B. Cines, and A. A.-R. Higazi (2006)
Am J Physiol Heart Circ Physiol 291, H1351-H1359
   Abstract »    Full Text »    PDF »
Endocytic receptor LRP together with tPA and PAI-1 coordinates Mac-1-dependent macrophage migration.
C. Cao, D. A. Lawrence, Y. Li, C. A. Von Arnim, J. Herz, E. J. Su, A. Makarova, B. T. Hyman, D. K. Strickland, and L. Zhang (2006)
EMBO J. 25, 1860-1870
   Abstract »    Full Text »    PDF »
Maspin Retards Cell Detachment via a Novel Interaction with the Urokinase-Type Plasminogen Activator/Urokinase-Type Plasminogen Activator Receptor System..
S. Yin, J. Lockett, Y. Meng, H. Biliran Jr., G. E. Blouse, X. Li, N. Reddy, Z. Zhao, X. Lin, J. Anagli, et al. (2006)
Cancer Res. 66, 4173-4181
   Abstract »    Full Text »    PDF »
Transforming Growth Factor Beta 1 Induces Neointima Formation Through Plasminogen Activator Inhibitor-1-Dependent Pathways.
G. Otsuka, R. Agah, A. D. Frutkin, T. N. Wight, and D. A. Dichek (2006)
Arterioscler Thromb Vasc Biol 26, 737-743
   Abstract »    Full Text »    PDF »
Fibroblast growth factor (FGF) 2 and FGF9 mediate mesenchymal-epithelial interactions of peritubular and Sertoli cells in the rat testis.
R E. Ramy, A Verot, S Mazaud, F Odet, S Magre, and B Le Magueresse-Battistoni (2005)
J. Endocrinol. 187, 135-147
   Abstract »    Full Text »    PDF »
Regulation of Lipopolysaccharide-Induced Lung Inflammation by Plasminogen Activator Inhibitor-1 through a JNK-Mediated Pathway.
P. G. Arndt, S. K. Young, and G. S. Worthen (2005)
J. Immunol. 175, 4049-4059
   Abstract »    Full Text »    PDF »
Domain 2 of the Urokinase Receptor Contains an Integrin-interacting Epitope with Intrinsic Signaling Activity: GENERATION OF A NEW INTEGRIN INHIBITOR.
B. Degryse, M. Resnati, R.-P. Czekay, D. J. Loskutoff, and F. Blasi (2005)
J. Biol. Chem. 280, 24792-24803
   Abstract »    Full Text »    PDF »
Regulation of {alpha}5{beta}1 integrin conformation and function by urokinase receptor binding.
Y. Wei, R.-P. Czekay, L. Robillard, M. C. Kugler, F. Zhang, K. K. Kim, J.-p. Xiong, M. J. Humphries, and H. A. Chapman (2005)
J. Cell Biol. 168, 501-511
   Abstract »    Full Text »    PDF »
LDL-receptor-related protein regulates {beta}2-integrin-mediated leukocyte adhesion.
P. P. E. M. Spijkers, P. da Costa Martins, E. Westein, C. G. Gahmberg, J. J. Zwaginga, and P. J. Lenting (2005)
Blood 105, 170-177
   Abstract »    Full Text »    PDF »
Unexpected Role of Plasminogen Activator Inhibitor 1 in Cell Adhesion and Detachment.
R.-P. Czekay and D. J. Loskutoff (2004)
Experimental Biology and Medicine 229, 1090-1096
   Abstract »    Full Text »    PDF »
The Role of Hypoxia-Induced Factors in Tumor Progression.
P. Vaupel (2004)
Oncologist 9, 10-17
   Abstract »    Full Text »    PDF »
Membrane associated proteases and their inhibitors in tumour angiogenesis.
A Noel, C Maillard, N Rocks, M Jost, V Chabottaux, N E Sounni, E Maquoi, D Cataldo, and J M Foidart (2004)
J. Clin. Pathol. 57, 577-584
   Abstract »    Full Text »    PDF »
The Low Density Lipoprotein Receptor-related Protein Is a Motogenic Receptor for Plasminogen Activator Inhibitor-1.
B. Degryse, J. G. Neels, R.-P. Czekay, K. Aertgeerts, Y.-i. Kamikubo, and D. J. Loskutoff (2004)
J. Biol. Chem. 279, 22595-22604
   Abstract »    Full Text »    PDF »
The Kruppel-like KLF4 Transcription Factor, a Novel Regulator of Urokinase Receptor Expression, Drives Synthesis of This Binding Site in Colonic Crypt Luminal Surface Epithelial Cells.
H. Wang, L. Yang, M. S. Jamaluddin, and D. D. Boyd (2004)
J. Biol. Chem. 279, 22674-22683
   Abstract »    Full Text »    PDF »
Transcriptional Response of a Common Permissive Cell Type to Infection by Two Diverse Alphaherpesviruses.
N. Ray and L. W. Enquist (2004)
J. Virol. 78, 3489-3501
   Abstract »    Full Text »    PDF »
Low Density Lipoprotein Receptor-related Protein-1 Promotes {beta}1 Integrin Maturation and Transport to the Cell Surface.
A. M. Salicioni, A. Gaultier, C. Brownlee, M. K. Cheezum, and S. L. Gonias (2004)
J. Biol. Chem. 279, 10005-10012
   Abstract »    Full Text »    PDF »
Prevention of Obesity and Insulin Resistance in Mice Lacking Plasminogen Activator Inhibitor 1.
L.-J. Ma, S.-L. Mao, K. L. Taylor, T. Kanjanabuch, Y. Guan, Y. Zhang, N. J. Brown, L. L. Swift, O. P. McGuinness, D. H. Wasserman, et al. (2004)
Diabetes 53, 336-346
   Abstract »    Full Text »
Anoikis in the Cardiovascular System: Known and Unknown Extracellular Mediators.
J.-B. Michel (2003)
Arterioscler Thromb Vasc Biol 23, 2146-2154
   Abstract »    Full Text »    PDF »
Plasminogen supports tumor growth through a fibrinogen-dependent mechanism linked to vascular patency.
J. S. Palumbo, K. E. Talmage, H. Liu, C. M. La Jeunesse, D. P. Witte, and J. L. Degen (2003)
Blood 102, 2819-2827
   Abstract »    Full Text »    PDF »
Critical Role of Integrin {alpha}5{beta}1 in Urokinase (uPA)/Urokinase Receptor (uPAR, CD87) Signaling.
T. Tarui, N. Andronicos, R.-P. Czekay, A. P. Mazar, K. Bdeir, G. C. Parry, A. Kuo, D. J. Loskutoff, D. B. Cines, and Y. Takada (2003)
J. Biol. Chem. 278, 29863-29872
   Abstract »    Full Text »    PDF »
Old Dogs and New Tricks, Proteases, Inhibitors, and Cell Migration.
S. Stefansson and D. A. Lawrence (2003)
Sci. STKE 2003, pe24
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882