Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Cell Biol. 161 (5): 911-921

Copyright © 2003 by the Rockefeller University Press.


Article

BMPs signal alternately through a SMAD or FRAP–STAT pathway to regulate fate choice in CNS stem cells

Prithi Rajan, David M. Panchision, Laura F. Newell, and Ronald D.G. McKay

Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892

Address correspondence to Ronald D.G. McKay, 36 Convent Drive, MSC 4092, Bethesda, MD 20892. Tel.: (301) 496-6574. Fax: (301) 402-1340. E-mail: mckay{at}codon.nih.gov

Abstract: The ability of stem cells to generate distinct fates is critical for the generation of cellular diversity during development. Central nervous system (CNS) stem cells respond to bone morphogenetic protein (BMP) 4 by differentiating into a wide variety of dorsal CNS and neural crest cell types. We show that distinct mechanisms are responsible for the generation of two of these cell types, smooth muscle and glia. Smooth muscle differentiation requires BMP-mediated Smad1/5/8 activation and predominates where local cell density is low. In contrast, glial differentiation predominates at high local densities in response to BMP4 and is specifically blocked by a dominant-negative mutant Stat3. Upon BMP4 treatment, the serine-threonine kinase FKBP12/rapamycin-associated protein (FRAP), mammalian target of rapamycin (mTOR), associates with Stat3 and facilitates STAT activation. Inhibition of FRAP prevents STAT activation and glial differentiation. Thus, glial differentiation by BMP4 occurs by a novel pathway mediated by FRAP and STAT proteins. These results suggest that a single ligand can regulate cell fate by activating distinct cytoplasmic signals.

Key Words: bone morphogenetic protein; stem cell; SMAD; STAT; mammalian FRAP


P. Rajan and D.M. Panchision contributed equally to this work.

P. Rajan's present address is Psychiatric Genomics, Inc., 19 Firstfield Road, Gaithersburg, MD 20878.

* Abbreviations used in this paper: bFGF, basic FGF; BMP, bone morphogenetic protein; BMPR-IA, BMP receptor type one A; CNS, central nervous system; CNTF, ciliary neurotrophic factor; EMSA, electrophoretic mobility shift assay; FRAP, FKBP12/rapamycin-associated protein; FRB, FKBP12-rapamycin binding; GFAP, glial fibrillary acidic protein; SMA, smooth muscle {alpha}-actin.

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Hypothalamic Nesfatin-1/NUCB2 Knockdown Augments Hepatic Gluconeogenesis That Is Correlated With Inhibition of mTOR-STAT3 Signaling Pathway in Rats.
D. Wu, M. Yang, Y. Chen, Y. Jia, Z. A. Ma, G. Boden, L. Li, and G. Yang (2014)
Diabetes 63, 1234-1247
   Abstract »    Full Text »    PDF »
Inactivation of mTORC1 in the Developing Brain Causes Microcephaly and Affects Gliogenesis.
D. Cloetta, V. Thomanetz, C. Baranek, R. M. Lustenberger, S. Lin, F. Oliveri, S. Atanasoski, and M. A. Ruegg (2013)
J. Neurosci. 33, 7799-7810
   Abstract »    Full Text »    PDF »
Astrocyte pathology and the absence of non-cell autonomy in an induced pluripotent stem cell model of TDP-43 proteinopathy.
A. Serio, B. Bilican, S. J. Barmada, D. M. Ando, C. Zhao, R. Siller, K. Burr, G. Haghi, D. Story, A. L. Nishimura, et al. (2013)
PNAS 110, 4697-4702
   Abstract »    Full Text »    PDF »
Bone morphogenetic protein 7 (BMP7) reverses obesity and regulates appetite through a central mTOR pathway.
K. L. Townsend, R. Suzuki, T. L. Huang, E. Jing, T. J. Schulz, K. Lee, C. M. Taniguchi, D. O. Espinoza, L. E. McDougall, H. Zhang, et al. (2012)
FASEB J 26, 2187-2196
   Abstract »    Full Text »    PDF »
Emerging functions of myelin-associated proteins during development, neuronal plasticity, and neurodegeneration.
F. Llorens, V. Gil, and J. A. del Rio (2011)
FASEB J 25, 463-475
   Abstract »    Full Text »    PDF »
The Suppression of CRMP2 Expression by Bone Morphogenetic Protein (BMP)-SMAD Gradient Signaling Controls Multiple Stages of Neuronal Development.
Y. Sun, T. Fei, T. Yang, F. Zhang, Y.-G. Chen, H. Li, and Z. Xu (2010)
J. Biol. Chem. 285, 39039-39050
   Abstract »    Full Text »    PDF »
L-Proline as a modulator of ectodermal differentiation in ES cells. Focus on "L-Proline induces differentiation of ES cells: a novel role for an amino acid in the regulation of pluripotent cells in culture.
F. Pistollato, L. Persano, E. Rampazzo, and G. Basso (2010)
Am J Physiol Cell Physiol 298, C979-C981
   Full Text »    PDF »
Notch Exhibits Ligand Bias and Maneuvers Stage-Specific Steering of Neural Differentiation in Embryonic Stem Cells.
S. K. Ramasamy and N. Lenka (2010)
Mol. Cell. Biol. 30, 1946-1957
   Abstract »    Full Text »    PDF »
BMPR1a and BMPR1b Signaling Exert Opposing Effects on Gliosis after Spinal Cord Injury.
V. Sahni, A. Mukhopadhyay, V. Tysseling, A. Hebert, D. Birch, T. L. Mcguire, S. I. Stupp, and J. A. Kessler (2010)
J. Neurosci. 30, 1839-1855
   Abstract »    Full Text »    PDF »
Signal Transducer and Activator of Transcription 3 (STAT3) Mediates Amino Acid Inhibition of Insulin Signaling through Serine 727 Phosphorylation.
J.-H. Kim, M.-S. Yoon, and J. Chen (2009)
J. Biol. Chem. 284, 35425-35432
   Abstract »    Full Text »    PDF »
CXXC5 Is a Novel BMP4-regulated Modulator of Wnt Signaling in Neural Stem Cells.
T. Andersson, E. Sodersten, J. K. Duckworth, A. Cascante, N. Fritz, P. Sacchetti, I. Cervenka, V. Bryja, and O. Hermanson (2009)
J. Biol. Chem. 284, 3672-3681
   Abstract »    Full Text »    PDF »
BMP4 regulation of human megakaryocytic differentiation is involved in thrombopoietin signaling.
S. Jeanpierre, F. E. Nicolini, B. Kaniewski, C. Dumontet, R. Rimokh, A. Puisieux, and V. Maguer-Satta (2008)
Blood 112, 3154-3163
   Abstract »    Full Text »    PDF »
Endogenous heparan sulfate and heparin modulate bone morphogenetic protein-4 signaling and activity.
S. A. Khan, M. S. Nelson, C. Pan, P. M. Gaffney, and P. Gupta (2008)
Am J Physiol Cell Physiol 294, C1387-C1397
   Abstract »    Full Text »    PDF »
Regulation of Interleukin-6-induced Hepatic Insulin Resistance by Mammalian Target of Rapamycin through the STAT3-SOCS3 Pathway.
J.-H. Kim, J. E. Kim, H.-Y. Liu, W. Cao, and J. Chen (2008)
J. Biol. Chem. 283, 708-715
   Abstract »    Full Text »    PDF »
Adult Neurogenesis Requires Smad4-Mediated Bone Morphogenic Protein Signaling in Stem Cells.
D. Colak, T. Mori, M. S. Brill, A. Pfeifer, S. Falk, C. Deng, R. Monteiro, C. Mummery, L. Sommer, and M. Gotz (2008)
J. Neurosci. 28, 434-446
   Abstract »    Full Text »    PDF »
Constitutively Active Akt Induces Ectodermal Defects and Impaired Bone Morphogenetic Protein Signaling.
C. Segrelles, M. Moral, C. Lorz, M. Santos, J. Lu, J. L. Cascallana, M. F. Lara, S. Carbajal, A. B. Martinez-Cruz, R. Garcia-Escudero, et al. (2008)
Mol. Biol. Cell 19, 137-149
   Abstract »    Full Text »    PDF »
The role of jak2a in zebrafish hematopoiesis.
A. C. H. Ma, A. C. Ward, R. Liang, and A. Y. H. Leung (2007)
Blood 110, 1824-1830
   Abstract »    Full Text »    PDF »
Potentiation of Astrogliogenesis by STAT3-Mediated Activation of Bone Morphogenetic Protein-Smad Signaling in Neural Stem Cells.
S. Fukuda, M. Abematsu, H. Mori, M. Yanagisawa, T. Kagawa, K. Nakashima, A. Yoshimura, and T. Taga (2007)
Mol. Cell. Biol. 27, 4931-4937
   Abstract »    Full Text »    PDF »
Environmental signals regulate lineage choice and temporal maturation of neural stem cells from human embryonic stem cells.
A. J. Joannides, D. J. Webber, O. Raineteau, C. Kelly, K.-A. Irvine, C. Watts, A. E. Rosser, P. J. Kemp, W. F. Blakemore, A. Compston, et al. (2007)
Brain 130, 1263-1275
   Abstract »    Full Text »    PDF »
Modulation of the PI 3-kinase-Akt signalling pathway by IGF-I and PTEN regulates the differentiation of neural stem/precursor cells.
G. Otaegi, M. J. Yusta-Boyo, E. Vergano-Vera, H. R. Mendez-Gomez, A. C. Carrera, J. L. Abad, M. Gonzalez, E. J. de la Rosa, C. Vicario-Abejon, and F. de Pablo (2006)
J. Cell Sci. 119, 2739-2748
   Abstract »    Full Text »    PDF »
AKT Activation in Human Glioblastomas Enhances Proliferation via TSC2 and S6 Kinase Signaling.
M. J. Riemenschneider, R. A. Betensky, S. M. Pasedag, and D. N. Louis (2006)
Cancer Res. 66, 5618-5623
   Abstract »    Full Text »    PDF »
BMP4 Regulates Pancreatic Progenitor Cell Expansion through Id2.
H. Hua, Y.-Q. Zhang, S. Dabernat, M. Kritzik, D. Dietz, L. Sterling, and N. Sarvetnick (2006)
J. Biol. Chem. 281, 13574-13580
   Abstract »    Full Text »    PDF »
BMP signaling controls PASMC KV channel expression in vitro and in vivo.
K. A. Young, C. Ivester, J. West, M. Carr, and D. M. Rodman (2006)
Am J Physiol Lung Cell Mol Physiol 290, L841-L848
   Abstract »    Full Text »    PDF »
BMP2 and FGF2 cooperate to induce neural-crest-like fates from fetal and adult CNS stem cells.
M. H. M. Sailer, T. G. Hazel, D. M. Panchision, D. J. Hoeppner, M. E. Schwab, and R. D. G. McKay (2005)
J. Cell Sci. 118, 5849-5860
   Abstract »    Full Text »    PDF »
Bone Morphogenetic Protein (BMP) Type II Receptor Deletion Reveals BMP Ligand-specific Gain of Signaling in Pulmonary Artery Smooth Muscle Cells.
P. B. Yu, H. Beppu, N. Kawai, E. Li, and K. D. Bloch (2005)
J. Biol. Chem. 280, 24443-24450
   Abstract »    Full Text »    PDF »
Interleukin-12-induced Interferon-{gamma} Production by Human Peripheral Blood T Cells Is Regulated by Mammalian Target of Rapamycin (mTOR).
H. Kusaba, P. Ghosh, R. Derin, M. Buchholz, C. Sasaki, K. Madara, and D. L. Longo (2005)
J. Biol. Chem. 280, 1037-1043
   Abstract »    Full Text »    PDF »
Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in multiple myeloma.
N. Raje, S. Kumar, T. Hideshima, K. Ishitsuka, D. Chauhan, C. Mitsiades, K. Podar, S. Le Gouill, P. Richardson, N. C. Munshi, et al. (2004)
Blood 104, 4188-4193
   Abstract »    Full Text »    PDF »
Progenitor cells of the testosterone-producing Leydig cells revealed.
M. S. Davidoff, R. Middendorff, G. Enikolopov, D. Riethmacher, A. F. Holstein, and D. Muller (2004)
J. Cell Biol. 167, 935-944
   Abstract »    Full Text »    PDF »
Nuclear export of OLIG2 in neural stem cells is essential for ciliary neurotrophic factor-induced astrocyte differentiation.
T. Setoguchi and T. Kondo (2004)
J. Cell Biol. 166, 963-968
   Abstract »    Full Text »    PDF »
Gbb/Bmp signaling is essential for maintaining germline stem cells and for repressing bam transcription in the Drosophila testis.
E. Kawase, M. D. Wong, B. C. Ding, and T. Xie (2004)
Development 131, 1365-1375
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882