Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Cell Biol. 161 (6): 1133-1141

Copyright © 2003 by the Rockefeller University Press.


Back signaling by the Nrg-1 intracellular domain

Jianxin Bao1,3, Deon Wolpowitz3, Lorna W. Role1,3, and David A. Talmage2,4

1 Department of Anatomy and Cell Biology, Columbia University, New York, NY 10032
2 Department of Pediatrics, Columbia University, New York, NY 10032
3 Center for Neurobiology and Behavior, Columbia University, New York, NY 10032
4 Institute of Human Nutrition, Columbia University, New York, NY 10032

Address correspondence to David A. Talmage, Institute of Human Nutrition, 701 West 168th St., 5-503 New York, NY 10032. Tel.: (212) 305-2107. Fax: (212) 305-3079. E-mail: dat1{at}

Abstract: Transmembrane isoforms of neuregulin-1 (Nrg-1), ligands for erbB receptors, include an extracellular domain with an EGF-like sequence and a highly conserved intracellular domain (ICD) of unknown function. In this paper, we demonstrate that transmembrane isoforms of Nrg-1 are bidirectional signaling molecules in neurons. The stimuli for Nrg-1 back signaling include binding of erbB receptor dimers to the extracellular domain of Nrg-1 and neuronal depolarization. These stimuli elicit proteolytic release and translocation of the ICD of Nrg-1 to the nucleus. Once in the nucleus, the Nrg-1 ICD represses expression of several regulators of apoptosis, resulting in decreased neuronal cell death in vitro. Thus, regulated proteolytic processing of Nrg-1 results in retrograde signaling that appears to mediate contact and activity-dependent survival of Nrg-1–expressing neurons.

Key Words: erbB receptors; apoptosis; {gamma}-secretase; synaptic maintenance; neurodegeneration

* Abbreviations used in this paper: CRD, cysteine-rich domain; ECD, extracellular domain; ICD, intracellular domain; LIMK1, LIM kinase 1; Nrg-1, neuregulin-1.

ErbB4 reduces synaptic GABAA currents independent of its receptor tyrosine kinase activity.
R. M. Mitchell, M. J. Janssen, I. Karavanova, D. Vullhorst, K. Furth, A. Makusky, S. P. Markey, and A. Buonanno (2013)
PNAS 110, 19603-19608
   Abstract »    Full Text »    PDF »
Type III Neuregulin 1 Is Required for Multiple Forms of Excitatory Synaptic Plasticity of Mouse Cortico-Amygdala Circuits.
L. Jiang, J. Emmetsberger, D. A. Talmage, and L. W. Role (2013)
J. Neurosci. 33, 9655-9666
   Abstract »    Full Text »    PDF »
Dual Cleavage of Neuregulin 1 Type III by BACE1 and ADAM17 Liberates Its EGF-Like Domain and Allows Paracrine Signaling.
D. Fleck, F. van Bebber, A. Colombo, C. Galante, B. M. Schwenk, L. Rabe, H. Hampel, B. Novak, E. Kremmer, S. Tahirovic, et al. (2013)
J. Neurosci. 33, 7856-7869
   Abstract »    Full Text »    PDF »
Cell surface annexins regulate ADAM-mediated ectodomain shedding of proamphiregulin.
H. Nakayama, S. Fukuda, H. Inoue, H. Nishida-Fukuda, Y. Shirakata, K. Hashimoto, and S. Higashiyama (2012)
Mol. Biol. Cell 23, 1964-1975
   Abstract »    Full Text »    PDF »
Neuregulin/ErbB regulate neuromuscular junction development by phosphorylation of {alpha}-dystrobrevin.
N. Schmidt, M. Akaaboune, N. Gajendran, I. Martinez-Pena y Valenzuela, S. Wakefield, R. Thurnheer, and H. R. Brenner (2011)
J. Cell Biol. 195, 1171-1184
   Abstract »    Full Text »    PDF »
Type III neuregulin 1 regulates pathfinding of sensory axons in the developing spinal cord and periphery.
M. L. Hancock, D. W. Nowakowski, L. W. Role, D. A. Talmage, and J. G. Flanagan (2011)
Development 138, 4887-4898
   Abstract »    Full Text »    PDF »
Ectodomain shedding and remnant peptide signalling of EGFRs and their ligands.
S. Higashiyama, D. Nanba, H. Nakayama, H. Inoue, and S. Fukuda (2011)
J. Biochem. 150, 15-22
   Abstract »    Full Text »    PDF »
Axonally Derived Neuregulin-1 Is Required for Remyelination and Regeneration after Nerve Injury in Adulthood.
F. R. Fricker, N. Lago, S. Balarajah, C. Tsantoulas, S. Tanna, N. Zhu, S. K. Fageiry, M. Jenkins, A. N. Garratt, C. Birchmeier, et al. (2011)
J. Neurosci. 31, 3225-3233
   Abstract »    Full Text »    PDF »
Nrg1 Reverse Signaling in Cortical Pyramidal Neurons.
S. P. Pedrique and P. Fazzari (2010)
J. Neurosci. 30, 15005-15006
   Full Text »    PDF »
Intramembranous Valine Linked to Schizophrenia Is Required for Neuregulin 1 Regulation of the Morphological Development of Cortical Neurons.
Y. Chen, M. L. Hancock, L. W. Role, and D. A. Talmage (2010)
J. Neurosci. 30, 9199-9208
   Abstract »    Full Text »    PDF »
Sequential and {gamma}-secretase-dependent processing of the betacellulin precursor generates a palmitoylated intracellular-domain fragment that inhibits cell growth.
A. Stoeck, L. Shang, and P. J. Dempsey (2010)
J. Cell Sci. 123, 2319-2331
   Abstract »    Full Text »    PDF »
{gamma}-Secretase Composed of PS1/Pen2/Aph1a Can Cleave Notch and Amyloid Precursor Protein in the Absence of Nicastrin.
G. Zhao, Z. Liu, Ma. X. G. Ilagan, and R. Kopan (2010)
J. Neurosci. 30, 1648-1656
   Abstract »    Full Text »    PDF »
Modeling an Anti-Amyloid Combination Therapy for Alzheimer's Disease.
V. W. Chow, A. V. Savonenko, T. Melnikova, H. Kim, D. L. Price, T. Li, and P. C. Wong (2010)
Science Translational Medicine 2, 13ra1
   Abstract »    Full Text »    PDF »
Diagnosis and new treatments in genetic neuropathies.
M M Reilly and M E Shy (2009)
J. Neurol. Neurosurg. Psychiatry 80, 1304-1314
   Abstract »    Full Text »    PDF »
Sustained Axon-Glial Signaling Induces Schwann Cell Hyperproliferation, Remak Bundle Myelination, and Tumorigenesis.
J. A. Gomez-Sanchez, M. Lopez de Armentia, R. Lujan, N. Kessaris, W. D. Richardson, and H. Cabedo (2009)
J. Neurosci. 29, 11304-11315
   Abstract »    Full Text »    PDF »
ErbB4-Neuregulin Signaling Modulates Synapse Development and Dendritic Arborization through Distinct Mechanisms.
D. Krivosheya, L. Tapia, J. N. Levinson, K. Huang, Y. Kang, R. Hines, A. K. Ting, A. M. Craig, L. Mei, S. X. Bamji, et al. (2008)
J. Biol. Chem. 283, 32944-32956
   Abstract »    Full Text »    PDF »
Presynaptic Type III Neuregulin1-ErbB signaling targets {alpha}7 nicotinic acetylcholine receptors to axons.
M. L. Hancock, S. E. Canetta, L. W. Role, and D. A. Talmage (2008)
J. Cell Biol. 181, 511-521
   Abstract »    Full Text »    PDF »
Presynaptic Type III Neuregulin 1 Is Required for Sustained Enhancement of Hippocampal Transmission by Nicotine and for Axonal Targeting of {alpha}7 Nicotinic Acetylcholine Receptors.
C. Zhong, C. Du, M. Hancock, M. Mertz, D. A. Talmage, and L. W. Role (2008)
J. Neurosci. 28, 9111-9116
   Abstract »    Full Text »    PDF »
Deficiency of Aph1B/C-{gamma}-secretase disturbs Nrg1 cleavage and sensorimotor gating that can be reversed with antipsychotic treatment.
T. Dejaegere, L. Serneels, M. K. Schafer, J. Van Biervliet, K. Horre, C. Depboylu, D. Alvarez-Fischer, A. Herreman, M. Willem, C. Haass, et al. (2008)
PNAS 105, 9775-9780
   Abstract »    Full Text »    PDF »
Type III Neuregulin-1 Is Required for Normal Sensorimotor Gating, Memory-Related Behaviors, and Corticostriatal Circuit Components.
Y.-J. J. Chen, M. A. Johnson, M. D. Lieberman, R. E. Goodchild, S. Schobel, N. Lewandowski, G. Rosoklija, R.-C. Liu, J. A. Gingrich, S. Small, et al. (2008)
J. Neurosci. 28, 6872-6883
   Abstract »    Full Text »    PDF »
Molecular Cloning of a Brain-specific, Developmentally Regulated Neuregulin 1 (NRG1) Isoform and Identification of a Functional Promoter Variant Associated with Schizophrenia.
W. Tan, Y. Wang, B. Gold, J. Chen, M. Dean, P. J. Harrison, D. R. Weinberger, and A. J. Law (2007)
J. Biol. Chem. 282, 24343-24351
   Abstract »    Full Text »    PDF »
Biomedicine. Avoiding collateral damage in Alzheimer's disease treatment..
C. Glabe (2006)
Science 314, 602-603
   Abstract »    Full Text »    PDF »
Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5' SNPs associated with the disease.
A. J. Law, B. K. Lipska, C. S. Weickert, T. M. Hyde, R. E. Straub, R. Hashimoto, P. J. Harrison, J. E. Kleinman, and D. R. Weinberger (2006)
PNAS 103, 6747-6752
   Abstract »    Full Text »    PDF »
Cytoplasmic Domain of proEGF Affects Distribution and Post-Translational Modification of Microtubuli and Increases Microtubule-Associated Proteins 1b and 2 Production in Human Thyroid Carcinoma Cells.
J. Pyka, A. Glogowska, H. Dralle, C. Hoang-Vu, and T. Klonisch (2005)
Cancer Res. 65, 1343-1351
   Abstract »    Full Text »    PDF »
Expression of Neuregulin 1, a Member of the Epidermal Growth Factor Family, Is Expressed as Multiple Splice Variants in the Adult Human Cornea.
D. J. Brown, B. Lin, and B. Holguin (2004)
Invest. Ophthalmol. Vis. Sci. 45, 3021-3029
   Abstract »    Full Text »    PDF »
The APP intracellular domain forms nuclear multiprotein complexes and regulates the transcription of its own precursor.
R. C. von Rotz, B. M. Kohli, J. Bosset, M. Meier, T. Suzuki, R. M. Nitsch, and U. Konietzko (2004)
J. Cell Sci. 117, 4435-4448
   Abstract »    Full Text »    PDF »
Axonal Neuregulin-1 Regulates Myelin Sheath Thickness.
G. V. Michailov, M. W. Sereda, B. G. Brinkmann, T. M. Fischer, B. Haug, C. Birchmeier, L. Role, C. Lai, M. H. Schwab, and K.-A. Nave (2004)
Science 304, 700-703
   Abstract »    Full Text »    PDF »
Proteolytic release of the carboxy-terminal fragment of proHB-EGF causes nuclear export of PLZF.
D. Nanba, A. Mammoto, K. Hashimoto, and S. Higashiyama (2003)
J. Cell Biol. 163, 489-502
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882