Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Cell Biol. 162 (5): 889-898

Copyright © 2003 by the Rockefeller University Press.


Article

Wnt-5/pipetail functions in vertebrate axis formation as a negative regulator of Wnt/ß-catenin activity

Trudi A. Westfall1, Ryan Brimeyer1, Jen Twedt1, Jean Gladon1, Andrea Olberding1, Makoto Furutani-Seiki2, and Diane C. Slusarski1

1 Department of Biological Sciences, University of Iowa, Iowa City, IA 52242
2 Kondoh Differentiation Signaling Project, Sakyo-ku, 606-8394 Kyoto, Japan

Address correspondence to Diane C. Slusarski, Dept. of Biological Sciences, 312 Biology Building, University of Iowa, Iowa City, IA 52242. Tel.: (319) 335-3229. Fax: (319) 335-1069. email: diane-slusarski{at}uiowa.edu

Abstract: We provide genetic evidence defining a role for noncanonical Wnt function in vertebrate axis formation. In zebrafish, misexpression of Wnt-4, -5, and -11 stimulates calcium (Ca2+) release, defining the Wnt/Ca2+ class. We describe genetic interaction between two Wnt/Ca2+ members, Wnt-5 (pipetail) and Wnt-11 (silberblick), and a reduction of Ca2+ release in Wnt-5/pipetail. Embryos genetically depleted of both maternal and zygotic Wnt-5 product exhibit cell movement defects as well as hyperdorsalization and axis-duplication phenotypes. The dorsalized phenotypes result from increased ß-catenin accumulation and activation of downstream genes. The Wnt-5 loss-of-function defect is consistent with Ca2+ modulation having an antagonistic interaction with Wnt/ß-catenin signaling.

Key Words: dorsal–ventral patterning; calcium; zebrafish; morphogenesis; signal transduction


Abbreviations used in this paper: Ca2+, calcium; CaMKII, Ca2+/calmodulin-dependent kinase; dsh, dishevelled; D-V, dorsal-ventral; hpf, hours post fertilization; IP3R, inositol 1,4,5-triphosphate receptor; mz, maternal-zygotic; ppt, pipetail; slb, silberblick; YSL, yolk syncytial layer; XeC, Xestospongin C.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Novel mutations in Lrp6 orthologs in mouse and human neural tube defects affect a highly dosage-sensitive Wnt non-canonical planar cell polarity pathway.
R. Allache, S. Lachance, M. C. Guyot, P. De Marco, E. Merello, M. J. Justice, V. Capra, and Z. Kibar (2014)
Hum. Mol. Genet. 23, 1687-1699
   Abstract »    Full Text »    PDF »
The Wnt Coreceptor Ryk Regulates Wnt/Planar Cell Polarity by Modulating the Degradation of the Core Planar Cell Polarity Component Vangl2.
P. Andre, Q. Wang, N. Wang, B. Gao, A. Schilit, M. M. Halford, S. A. Stacker, X. Zhang, and Y. Yang (2012)
J. Biol. Chem. 287, 44518-44525
   Abstract »    Full Text »    PDF »
Activation of Wnt11 by Transforming Growth Factor-{beta} Drives Mesenchymal Gene Expression through Non-canonical Wnt Protein Signaling in Renal Epithelial Cells.
P. Zhang, Y. Cai, A. Soofi, and G. R. Dressler (2012)
J. Biol. Chem. 287, 21290-21302
   Abstract »    Full Text »    PDF »
Loss of Porcupine impairs convergent extension during gastrulation in zebrafish.
Q. Chen, R. Takada, and S. Takada (2012)
J. Cell Sci. 125, 2224-2234
   Abstract »    Full Text »    PDF »
Regulator of G-protein signaling 18 controls megakaryopoiesis and the cilia-mediated vertebrate mechanosensory system.
S. Louwette, V. Labarque, C. Wittevrongel, C. Thys, J. Metz, R. Gijsbers, Z. Debyser, J. Arnout, C. Van Geet, and K. Freson (2012)
FASEB J 26, 2125-2136
   Abstract »    Full Text »    PDF »
PTK7/Otk interacts with Wnts and inhibits canonical Wnt signalling.
H. Peradziryi, N. A. Kaplan, M. Podleschny, X. Liu, P. Wehner, A. Borchers, and N. S. Tolwinski (2011)
EMBO J. 30, 3729-3740
   Abstract »    Full Text »    PDF »
The N-terminal region of centrosomal protein 290 (CEP290) restores vision in a zebrafish model of human blindness.
L. M. Baye, X. Patrinostro, S. Swaminathan, J. S. Beck, Y. Zhang, E. M. Stone, V. C. Sheffield, and D. C. Slusarski (2011)
Hum. Mol. Genet. 20, 1467-1477
   Abstract »    Full Text »    PDF »
Calpain Activation by Wingless-type Murine Mammary Tumor Virus Integration Site Family, Member 5A (Wnt5a) Promotes Axonal Growth.
G.-Y. Yang, B. Liang, J. Zhu, and Z.-G. Luo (2011)
J. Biol. Chem. 286, 6566-6576
   Abstract »    Full Text »    PDF »
Rack1 is required for Vangl2 membrane localization and planar cell polarity signaling while attenuating canonical Wnt activity.
S. Li, R. Esterberg, V. Lachance, D. Ren, K. Radde-Gallwitz, F. Chi, J.-L. Parent, A. Fritz, and P. Chen (2011)
PNAS 108, 2264-2269
   Abstract »    Full Text »    PDF »
Disruption of PCP signaling causes limb morphogenesis and skeletal defects and may underlie Robinow syndrome and brachydactyly type B.
B. Wang, T. Sinha, K. Jiao, R. Serra, and J. Wang (2011)
Hum. Mol. Genet. 20, 271-285
   Abstract »    Full Text »    PDF »
Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors.
L. Grumolato, G. Liu, P. Mong, R. Mudbhary, R. Biswas, R. Arroyave, S. Vijayakumar, A. N. Economides, and S. A. Aaronson (2010)
Genes & Dev. 24, 2517-2530
   Abstract »    Full Text »    PDF »
Wnt5b-Ryk pathway provides directional signals to regulate gastrulation movement.
S. Lin, L. M. Baye, T. A. Westfall, and D. C. Slusarski (2010)
J. Cell Biol. 190, 263-278
   Abstract »    Full Text »    PDF »
Noncanonical Wnt11 Inhibits Hepatocellular Carcinoma Cell Proliferation and Migration.
T. Toyama, H. C. Lee, H. Koga, J. R. Wands, and M. Kim (2010)
Mol. Cancer Res. 8, 254-265
   Abstract »    Full Text »    PDF »
Wnt5a regulates distinct signalling pathways by binding to Frizzled2.
A. Sato, H. Yamamoto, H. Sakane, H. Koyama, and A. Kikuchi (2010)
EMBO J. 29, 41-54
   Abstract »    Full Text »    PDF »
Canonical Wnt signaling negatively regulates platelet function.
B. M. Steele, M. T. Harper, I. C. Macaulay, C. N. Morrell, A. Perez-Tamayo, M. Foy, R. Habas, A. W. Poole, D. J. Fitzgerald, and P. B. Maguire (2009)
PNAS 106, 19836-19841
   Abstract »    Full Text »    PDF »
Heparan Sulfate Proteoglycan Modulation of Wnt5A Signal Transduction in Metastatic Melanoma Cells.
M. P. O'Connell, J. L. Fiori, E. K. Kershner, B. P. Frank, F. E. Indig, D. D. Taub, K. S. Hoek, and A. T. Weeraratna (2009)
J. Biol. Chem. 284, 28704-28712
   Abstract »    Full Text »    PDF »
Zebrafish eaf1 and eaf2/u19 Mediate Effective Convergence and Extension Movements through the Maintenance of wnt11 and wnt5 Expression.
J.-X. Liu, B. Hu, Y. Wang, J.-F. Gui, and W. Xiao (2009)
J. Biol. Chem. 284, 16679-16692
   Abstract »    Full Text »    PDF »
Xenopus Wntless and the Retromer Complex Cooperate To Regulate XWnt4 Secretion.
H. Kim, S.-M. Cheong, J. Ryu, H.-J. Jung, E.-h. Jho, and J.-K. Han (2009)
Mol. Cell. Biol. 29, 2118-2128
   Abstract »    Full Text »    PDF »
Wnt5A Regulates Expression of Tumor-Associated Antigens in Melanoma via Changes in Signal Transducers and Activators of Transcription 3 Phosphorylation.
S. K. Dissanayake, P. B. Olkhanud, M. P. O'Connell, A. Carter, A. D. French, T. C. Camilli, C. D. Emeche, K. J. Hewitt, D. T. Rosenthal, P. D. Leotlela, et al. (2008)
Cancer Res. 68, 10205-10214
   Abstract »    Full Text »    PDF »
Variable DNA methylation patterns associated with progression of disease in hepatocellular carcinomas.
W. Gao, Y. Kondo, L. Shen, Y. Shimizu, T. Sano, K. Yamao, A. Natsume, Y. Goto, M. Ito, H. Murakami, et al. (2008)
Carcinogenesis 29, 1901-1910
   Abstract »    Full Text »    PDF »
WNT5A Expression Increases during Melanoma Progression and Correlates with Outcome.
P. D. Da Forno, J. H. Pringle, P. Hutchinson, J. Osborn, Q. Huang, L. Potter, R. A. Hancox, A. Fletcher, and G. S. Saldanha (2008)
Clin. Cancer Res. 14, 5825-5832
   Abstract »    Full Text »    PDF »
Introduction. Calcium signals and developmental patterning.
M. Whitaker and J. Smith (2008)
Phil Trans R Soc B 363, 1307-1310
   Abstract »    Full Text »    PDF »
From individual Wnt pathways towards a Wnt signalling network.
H. A Kestler and M. Kuhl (2008)
Phil Trans R Soc B 363, 1333-1347
   Abstract »    Full Text »    PDF »
Calcium dynamics integrated into signalling pathways that influence vertebrate axial patterning.
C. M Freisinger, I. Schneider, T. A Westfall, and D. C Slusarski (2008)
Phil Trans R Soc B 363, 1377-1385
   Abstract »    Full Text »    PDF »
Calcium fluxes in dorsal forerunner cells antagonize -catenin and alter left-right patterning.
I. Schneider, D. W. Houston, M. R. Rebagliati, and D. C. Slusarski (2008)
Development 135, 75-84
   Abstract »    Full Text »    PDF »
Noncanonical Wnt signaling promotes apoptosis in thymocyte development.
H. Liang, A. H. Coles, Z. Zhu, J. Zayas, R. Jurecic, J. Kang, and S. N. Jones (2007)
J. Exp. Med. 204, 3077-3084
   Abstract »    Full Text »    PDF »
Wnt5a is required for proper mammary gland development and TGF-{beta}-mediated inhibition of ductal growth.
K. Roarty and R. Serra (2007)
Development 134, 3929-3939
   Abstract »    Full Text »    PDF »
The Wnt5A/Protein Kinase C Pathway Mediates Motility in Melanoma Cells via the Inhibition of Metastasis Suppressors and Initiation of an Epithelial to Mesenchymal Transition.
S. K. Dissanayake, M. Wade, C. E. Johnson, M. P. O'Connell, P. D. Leotlela, A. D. French, K. V. Shah, K. J. Hewitt, D. T. Rosenthal, F. E. Indig, et al. (2007)
J. Biol. Chem. 282, 17259-17271
   Abstract »    Full Text »    PDF »
Wnt-5a induces Dishevelled phosphorylation and dopaminergic differentiation via a CK1-dependent mechanism.
V. Bryja, G. Schulte, N. Rawal, A. Grahn, and E. Arenas (2007)
J. Cell Sci. 120, 586-595
   Abstract »    Full Text »    PDF »
Distinct Wnt signaling pathways have opposing roles in appendage regeneration.
C. L. Stoick-Cooper, G. Weidinger, K. J. Riehle, C. Hubbert, M. B. Major, N. Fausto, and R. T. Moon (2007)
Development 134, 479-489
   Abstract »    Full Text »    PDF »
beta-Catenin Signaling Pathway Is Crucial for Bone Morphogenetic Protein 2 to Induce New Bone Formation.
Y. Chen, H. C. Whetstone, A. Youn, P. Nadesan, E. C. Y. Chow, A. C. Lin, and B. A. Alman (2007)
J. Biol. Chem. 282, 526-533
   Abstract »    Full Text »    PDF »
Sfrp1 and Sfrp2 regulate anteroposterior axis elongation and somite segmentation during mouse embryogenesis.
W. Satoh, T. Gotoh, Y. Tsunematsu, S. Aizawa, and A. Shimono (2006)
Development 133, 989-999
   Abstract »    Full Text »    PDF »
Calcium at Fertilization and in Early Development.
M. Whitaker (2006)
Physiol Rev 86, 25-88
   Abstract »    Full Text »    PDF »
The Loss of Glypican-3 Induces Alterations in Wnt Signaling.
H. H. Song, W. Shi, Y.-Y. Xiang, and J. Filmus (2005)
J. Biol. Chem. 280, 2116-2125
   Abstract »    Full Text »    PDF »
Noncanonical Wnt signaling regulates midline convergence of organ primordia during zebrafish development.
T. Matsui, A. Raya, Y. Kawakami, C. Callol-Massot, J. Capdevila, C. Rodriguez-Esteban, and J. C. Izpisua Belmonte (2005)
Genes & Dev. 19, 164-175
   Abstract »    Full Text »    PDF »
Zebrafish Dapper1 and Dapper2 play distinct roles in Wnt-mediated developmental processes.
J. S. Waxman, A. M. Hocking, C. L. Stoick, and R. T. Moon (2004)
Development 131, 5909-5921
   Abstract »    Full Text »    PDF »
Inhibition of Wnt-1 Signaling Induces Apoptosis in {beta}-Catenin-Deficient Mesothelioma Cells.
L. You, B. He, K. Uematsu, Z. Xu, J. Mazieres, A. Lee, F. McCormick, and D. M. Jablons (2004)
Cancer Res. 64, 3474-3478
   Abstract »    Full Text »    PDF »
The Human Frizzled 6 (HFz6) Acts as a Negative Regulator of the Canonical Wnt{middle dot}{beta}-Catenin Signaling Cascade.
T. Golan, A. Yaniv, A. Bafico, G. Liu, and A. Gazit (2004)
J. Biol. Chem. 279, 14879-14888
   Abstract »    Full Text »    PDF »
Murine Frizzled-1 Behaves as an Antagonist of the Canonical Wnt/{beta}-Catenin Signaling.
S. Roman-Roman, D.-L. Shi, V. Stiot, E. Hay, B. Vayssiere, T. Garcia, R. Baron, and G. Rawadi (2004)
J. Biol. Chem. 279, 5725-5733
   Abstract »    Full Text »    PDF »
No tail co-operates with non-canonical Wnt signaling to regulate posterior body morphogenesis in zebrafish.
F. Marlow,, E. M. Gonzalez,,, C. Yin, C. Rojo, and L. Solnica-Krezel, (2004)
Development 131, 203-216
   Abstract »    Full Text »    PDF »
When Wnts antagonize Wnts.
G. Weidinger and R. T. Moon (2003)
J. Cell Biol. 162, 753-756
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882