Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Cell Biol. 162 (5): 899-908

Copyright © 2003 by the Rockefeller University Press.


Article

Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3–independent ß-catenin degradation

Lilia Topol, Xueyuan Jiang, Hosoon Choi, Lisa Garrett-Beal, Peter J. Carolan, and Yingzi Yang

Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892

Address correspondence to Yingzi Yang, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, 49 Convent Dr., Room 4A68, Bethesda, MD 20892. Tel: (301) 402-2034. Fax: (301) 402-2170. email: yyang{at}nhgri.nih.gov

Abstract: Wnts are secreted signaling molecules that can transduce their signals through several different pathways. Wnt-5a is considered a noncanonical Wnt as it does not signal by stabilizing ß-catenin in many biological systems. We have uncovered a new noncanonical pathway through which Wnt-5a antagonizes the canonical Wnt pathway by promoting the degradation of ß-catenin. This pathway is Siah2 and APC dependent, but GSK-3 and ß-TrCP independent. Furthermore, we provide evidence that Wnt-5a also acts in vivo to promote ß-catenin degradation in regulating mammalian limb development and possibly in suppressing tumor formation.

Key Words: limb; chondrogenesis; cancer; Siah2; APC


Xueyuan Jiang's present address is Dept. of Biochemistry and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China.

Abbreviations used in this paper: AER, apical ectodermal ridge; CEF, chick embryonic fibroblast; CsA, Cyclosporin A.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Wnt signaling in midbrain dopaminergic neuron development and regenerative medicine for Parkinson's disease.
E. Arenas (2014)
J Mol Cell Biol 6, 42-53
   Abstract »    Full Text »    PDF »
Modulating Wnt signaling to improve cell replacement therapy for Parkinson's disease.
C. L. Parish and L. H. Thompson (2014)
J Mol Cell Biol 6, 54-63
   Abstract »    Full Text »    PDF »
The Role of Ryk and Ror Receptor Tyrosine Kinases in Wnt Signal Transduction.
J. Green, R. Nusse, and R. van Amerongen (2014)
Cold Spring Harb Perspect Biol 6, a009175
   Abstract »    Full Text »    PDF »
Wnt Signaling Pathway in Non-Small Cell Lung Cancer.
D. J. Stewart (2014)
J Natl Cancer Inst 106, djt356
   Abstract »    Full Text »    PDF »
Activation of Intracellular Calcium by Multiple Wnt Ligands and Translocation of {beta}-Catenin into the Nucleus: A CONVERGENT MODEL OF Wnt/Ca2+ AND Wnt/{beta}-CATENIN PATHWAYS.
C. Thrasivoulou, M. Millar, and A. Ahmed (2013)
J. Biol. Chem. 288, 35651-35659
   Abstract »    Full Text »    PDF »
Hypoxia Induces Phenotypic Plasticity and Therapy Resistance in Melanoma via the Tyrosine Kinase Receptors ROR1 and ROR2.
M. P. O'Connell, K. Marchbank, M. R. Webster, A. A. Valiga, A. Kaur, A. Vultur, L. Li, M. Herlyn, J. Villanueva, Q. Liu, et al. (2013)
Cancer Discovery 3, 1378-1393
   Abstract »    Full Text »    PDF »
Wnt5a promotes human colon cancer cell migration and invasion but does not augment intestinal tumorigenesis in Apc1638N mice.
E. R. M. Bakker, A. M. Das, W. Helvensteijn, P. F. Franken, S. Swagemakers, M. A. van der Valk, T. L. M. ten Hagen, E. J. Kuipers, W. van Veelen, and R. Smits (2013)
Carcinogenesis 34, 2629-2638
   Abstract »    Full Text »    PDF »
Dexamethasone Induces Cross-Linked Actin Networks in Trabecular Meshwork Cells Through Noncanonical Wnt Signaling.
Y. Yuan, M. K. Call, Y. Yuan, Y. Zhang, K. Fischesser, C.-Y. Liu, and W. W.- Y. Kao (2013)
Invest. Ophthalmol. Vis. Sci. 54, 6502-6509
   Abstract »    Full Text »    PDF »
Insulin-like growth factor-I stimulates differentiation of ATII cells to ATI-like cells through activation of Wnt5a.
M. C. Ghosh, V. Gorantla, P. S. Makena, C. Luellen, S. E. Sinclair, A. Schwingshackl, and C. M. Waters (2013)
Am J Physiol Lung Cell Mol Physiol 305, L222-L228
   Abstract »    Full Text »    PDF »
A Wnt-er Migration: The Confusing Role of {beta}-Catenin in Melanoma Metastasis.
M. R. Webster and A. T. Weeraratna (2013)
Science Signaling 6, pe11
   Abstract »    Full Text »    PDF »
Wnt Signaling in Normal and Malignant Hematopoiesis.
W. Lento, K. Congdon, C. Voermans, M. Kritzik, and T. Reya (2013)
Cold Spring Harb Perspect Biol 5, a008011
   Abstract »    Full Text »    PDF »
The Wnt Coreceptor Ryk Regulates Wnt/Planar Cell Polarity by Modulating the Degradation of the Core Planar Cell Polarity Component Vangl2.
P. Andre, Q. Wang, N. Wang, B. Gao, A. Schilit, M. M. Halford, S. A. Stacker, X. Zhang, and Y. Yang (2012)
J. Biol. Chem. 287, 44518-44525
   Abstract »    Full Text »    PDF »
Wnt5a Potentiates TGF-{beta} Signaling to Promote Colonic Crypt Regeneration After Tissue Injury.
H. Miyoshi, R. Ajima, C. T. Luo, T. P. Yamaguchi, and T. S. Stappenbeck (2012)
Science 338, 108-113
   Abstract »    Full Text »    PDF »
Alternative Wnt Pathways and Receptors.
R. van Amerongen (2012)
Cold Spring Harb Perspect Biol 4, a007914
   Abstract »    Full Text »    PDF »
Wnt Signaling in Mammalian Development: Lessons from Mouse Genetics.
J. Wang, T. Sinha, and A. Wynshaw-Boris (2012)
Cold Spring Harb Perspect Biol 4, a007963
   Abstract »    Full Text »    PDF »
The Role of Canonical WNT Signaling Pathway in Oral Carcinogenesis: A Comprehensive Review.
J. NOGUTI, C. F. G. DE MOURA, T. A. HOSSAKA, M. FRANCO, C. T. F. OSHIMA, R. A. DEDIVITIS, and D. A. RIBEIRO (2012)
Anticancer Res 32, 873-878
   Abstract »    Full Text »    PDF »
Localization of glypican-4 in different membrane microdomains is involved in the regulation of Wnt signaling.
H. Sakane, H. Yamamoto, S. Matsumoto, A. Sato, and A. Kikuchi (2012)
J. Cell Sci. 125, 449-460
   Abstract »    Full Text »    PDF »
Targeting of Noncanonical Wnt5a Signaling by AP-1 Blocker Dominant-Negative Jun When It Inhibits Skin Carcinogenesis.
M.-I. Kang, A. R. Baker, C. R. Dextras, S. M. Cabarcas, M. R. Young, and N. H. Colburn (2012)
Genes & Cancer 3, 37-50
   Abstract »    Full Text »    PDF »
Wnt5a Skews Dendritic Cell Differentiation to an Unconventional Phenotype with Tolerogenic Features.
J. Valencia, C. Hernandez-Lopez, V. G. Martinez, L. Hidalgo, A. G. Zapata, A. Vicente, A. Varas, and R. Sacedon (2011)
J. Immunol. 187, 4129-4139
   Abstract »    Full Text »    PDF »
Wnt5a Suppresses Epithelial Ovarian Cancer by Promoting Cellular Senescence.
B. G. Bitler, J. P. Nicodemus, H. Li, Q. Cai, H. Wu, X. Hua, T. Li, M. J. Birrer, A. K. Godwin, P. Cairns, et al. (2011)
Cancer Res. 71, 6184-6194
   Abstract »    Full Text »    PDF »
Integrin Regulation of {beta}-Catenin Signaling in Ovarian Carcinoma.
R. J. Burkhalter, J. Symowicz, L. G. Hudson, C. J. Gottardi, and M. S. Stack (2011)
J. Biol. Chem. 286, 23467-23475
   Abstract »    Full Text »    PDF »
Hemodynamic Activation of {beta}-Catenin and T-Cell-Specific Transcription Factor Signaling in Vascular Endothelium Regulates Fibronectin Expression.
B. D. Gelfand, J. Meller, A. W. Pryor, M. Kahn, P. D. S. Bortz, B. R. Wamhoff, and B. R. Blackman (2011)
Arterioscler Thromb Vasc Biol 31, 1625-1633
   Abstract »    Full Text »    PDF »
Rack1 is required for Vangl2 membrane localization and planar cell polarity signaling while attenuating canonical Wnt activity.
S. Li, R. Esterberg, V. Lachance, D. Ren, K. Radde-Gallwitz, F. Chi, J.-L. Parent, A. Fritz, and P. Chen (2011)
PNAS 108, 2264-2269
   Abstract »    Full Text »    PDF »
Proteomics Profiling of Madin-Darby Canine Kidney Plasma Membranes Reveals Wnt-5a Involvement during Oncogenic H-Ras/TGF-{beta}-mediated Epithelial-Mesenchymal Transition.
Y.-S. Chen, R. A. Mathias, S. Mathivanan, E. A. Kapp, R. L. Moritz, H.-J. Zhu, and R. J. Simpson (2011)
Mol. Cell. Proteomics 10, M110.001131
   Abstract »    Full Text »    PDF »
Disruption of PCP signaling causes limb morphogenesis and skeletal defects and may underlie Robinow syndrome and brachydactyly type B.
B. Wang, T. Sinha, K. Jiao, R. Serra, and J. Wang (2011)
Hum. Mol. Genet. 20, 271-285
   Abstract »    Full Text »    PDF »
Wnt11 Promotes Cardiomyocyte Development by Caspase-Mediated Suppression of Canonical Wnt Signals.
M. Abdul-Ghani, D. Dufort, R. Stiles, Y. De Repentigny, R. Kothary, and L. A. Megeney (2011)
Mol. Cell. Biol. 31, 163-178
   Abstract »    Full Text »    PDF »
WNT pathways and upper limb anomalies.
M. M. Al-Qattan (2011)
J Hand Surg Eur Vol. 36, 9-22
   Abstract »    Full Text »    PDF »
International Union of Basic and Clinical Pharmacology. LXXX. The Class Frizzled Receptors.
G. Schulte (2010)
Pharmacol. Rev. 62, 632-667
   Abstract »    Full Text »    PDF »
Identification of Predictive Markers of Response to the MEK1/2 Inhibitor Selumetinib (AZD6244) in K-ras-Mutated Colorectal Cancer.
J. J. Tentler, S. Nallapareddy, A. C. Tan, A. Spreafico, T. M. Pitts, M. P. Morelli, H. M. Selby, M. I. Kachaeva, S. A. Flanigan, G. N. Kulikowski, et al. (2010)
Mol. Cancer Ther. 9, 3351-3362
   Abstract »    Full Text »    PDF »
Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors.
L. Grumolato, G. Liu, P. Mong, R. Mudbhary, R. Biswas, R. Arroyave, S. Vijayakumar, A. N. Economides, and S. A. Aaronson (2010)
Genes & Dev. 24, 2517-2530
   Abstract »    Full Text »    PDF »
Receptor tyrosine kinase-like orphan receptor 2 (ROR2) and Indian hedgehog regulate digit outgrowth mediated by the phalanx-forming region.
F. Witte, D. Chan, A. N. Economides, S. Mundlos, and S. Stricker (2010)
PNAS 107, 14211-14216
   Abstract »    Full Text »    PDF »
Wnt signaling regulates mitochondrial physiology and insulin sensitivity.
J. C. Yoon, A. Ng, B. H. Kim, A. Bianco, R. J. Xavier, and S. J. Elledge (2010)
Genes & Dev. 24, 1507-1518
   Abstract »    Full Text »    PDF »
The Inorganic Pyrophosphate Transporter ANK Preserves the Differentiated Phenotype of Articular Chondrocyte.
F. Cailotto, S. Sebillaud, P. Netter, J.-Y. Jouzeau, and A. Bianchi (2010)
J. Biol. Chem. 285, 10572-10582
   Abstract »    Full Text »    PDF »
{beta}-Galactosidase enzyme fragment complementation for the measurement of Wnt/{beta}-catenin signaling.
F. Verkaar, W. M. Blankesteijn, J. F. M. Smits, and G. J. R. Zaman (2010)
FASEB J 24, 1205-1217
   Abstract »    Full Text »    PDF »
Noncanonical Wnt11 Inhibits Hepatocellular Carcinoma Cell Proliferation and Migration.
T. Toyama, H. C. Lee, H. Koga, J. R. Wands, and M. Kim (2010)
Mol. Cancer Res. 8, 254-265
   Abstract »    Full Text »    PDF »
Wnt5a regulates distinct signalling pathways by binding to Frizzled2.
A. Sato, H. Yamamoto, H. Sakane, H. Koyama, and A. Kikuchi (2010)
EMBO J. 29, 41-54
   Abstract »    Full Text »    PDF »
Canonical Wnt signaling negatively regulates platelet function.
B. M. Steele, M. T. Harper, I. C. Macaulay, C. N. Morrell, A. Perez-Tamayo, M. Foy, R. Habas, A. W. Poole, D. J. Fitzgerald, and P. B. Maguire (2009)
PNAS 106, 19836-19841
   Abstract »    Full Text »    PDF »
Heparan Sulfate Proteoglycan Modulation of Wnt5A Signal Transduction in Metastatic Melanoma Cells.
M. P. O'Connell, J. L. Fiori, E. K. Kershner, B. P. Frank, F. E. Indig, D. D. Taub, K. S. Hoek, and A. T. Weeraratna (2009)
J. Biol. Chem. 284, 28704-28712
   Abstract »    Full Text »    PDF »
Activation of Wnt5A signaling is required for CXC chemokine ligand 12-mediated T-cell migration.
M. C. Ghosh, G. D. Collins, B. Vandanmagsar, K. Patel, M. Brill, A. Carter, A. Lustig, K. G. Becker, W. W. Wood III, C. D. Emeche, et al. (2009)
Blood 114, 1366-1373
   Abstract »    Full Text »    PDF »
The Links between Transcription, {beta}-catenin/JNK Signaling, and Carcinogenesis.
A. Saadeddin, R. Babaei-Jadidi, B. Spencer-Dene, and A. S. Nateri (2009)
Mol. Cancer Res. 7, 1189-1196
   Abstract »    Full Text »    PDF »
Wnt-5a-CKI{alpha} Signaling Promotes {beta}-Catenin/E-Cadherin Complex Formation and Intercellular Adhesion in Human Breast Epithelial Cells.
C. Medrek, G. Landberg, T. Andersson, and K. Leandersson (2009)
J. Biol. Chem. 284, 10968-10979
   Abstract »    Full Text »    PDF »
Wnt5A Regulates Expression of Tumor-Associated Antigens in Melanoma via Changes in Signal Transducers and Activators of Transcription 3 Phosphorylation.
S. K. Dissanayake, P. B. Olkhanud, M. P. O'Connell, A. Carter, A. D. French, T. C. Camilli, C. D. Emeche, K. J. Hewitt, D. T. Rosenthal, P. D. Leotlela, et al. (2008)
Cancer Res. 68, 10205-10214
   Abstract »    Full Text »    PDF »
Wnt5a regulates directional cell migration and cell proliferation via Ror2-mediated noncanonical pathway in mammalian palate development.
F. He, W. Xiong, X. Yu, R. Espinoza-Lewis, C. Liu, S. Gu, M. Nishita, K. Suzuki, G. Yamada, Y. Minami, et al. (2008)
Development 135, 3871-3879
   Abstract »    Full Text »    PDF »
Sfrp5 coordinates foregut specification and morphogenesis by antagonizing both canonical and noncanonical Wnt11 signaling.
Y. Li, S. A. Rankin, D. Sinner, A. P. Kenny, P. A. Krieg, and A. M. Zorn (2008)
Genes & Dev. 22, 3050-3063
   Abstract »    Full Text »    PDF »
Soluble Frizzled-Related Protein 1 Is Estrogen Inducible in Bone Marrow Stromal Cells and Suppresses the Earliest Events in Lymphopoiesis.
T. Yokota, K. Oritani, K. P. Garrett, T. Kouro, M. Nishida, I. Takahashi, M. Ichii, Y. Satoh, P. W. Kincade, and Y. Kanakura (2008)
J. Immunol. 181, 6061-6072
   Abstract »    Full Text »    PDF »
CaSR stimulates secretion of Wnt5a from colonic myofibroblasts to stimulate CDX2 and sucrase-isomaltase using Ror2 on intestinal epithelia.
I. I. Pacheco and R. J. MacLeod (2008)
Am J Physiol Gastrointest Liver Physiol 295, G748-G759
   Abstract »    Full Text »    PDF »
Variable DNA methylation patterns associated with progression of disease in hepatocellular carcinomas.
W. Gao, Y. Kondo, L. Shen, Y. Shimizu, T. Sano, K. Yamao, A. Natsume, Y. Goto, M. Ito, H. Murakami, et al. (2008)
Carcinogenesis 29, 1901-1910
   Abstract »    Full Text »    PDF »
Contrasting Responses of Lymphoid Progenitors to Canonical and Noncanonical Wnt Signals.
S. Malhotra, Y. Baba, K. P. Garrett, F. J. T. Staal, R. Gerstein, and P. W. Kincade (2008)
J. Immunol. 181, 3955-3964
   Abstract »    Full Text »    PDF »
WNT5A Expression Increases during Melanoma Progression and Correlates with Outcome.
P. D. Da Forno, J. H. Pringle, P. Hutchinson, J. Osborn, Q. Huang, L. Potter, R. A. Hancox, A. Fletcher, and G. S. Saldanha (2008)
Clin. Cancer Res. 14, 5825-5832
   Abstract »    Full Text »    PDF »
Wnt5a is expressed in murine and human atherosclerotic lesions.
M. A. Christman II, D. J. Goetz, E. Dickerson, K. D. McCall, C. J. Lewis, F. Benencia, M. J. Silver, L. D. Kohn, and R. Malgor (2008)
Am J Physiol Heart Circ Physiol 294, H2864-H2870
   Abstract »    Full Text »    PDF »
From individual Wnt pathways towards a Wnt signalling network.
H. A Kestler and M. Kuhl (2008)
Phil Trans R Soc B 363, 1333-1347
   Abstract »    Full Text »    PDF »
Calcium dynamics integrated into signalling pathways that influence vertebrate axial patterning.
C. M Freisinger, I. Schneider, T. A Westfall, and D. C Slusarski (2008)
Phil Trans R Soc B 363, 1377-1385
   Abstract »    Full Text »    PDF »
Dickkopf 1 (DKK1) regulates skin pigmentation and thickness by affecting Wnt/{beta}-catenin signaling in keratinocytes.
Y. Yamaguchi, T. Passeron, T. Hoashi, H. Watabe, F. Rouzaud, K.-i. Yasumoto, T. Hara, C. Tohyama, I. Katayama, T. Miki, et al. (2008)
FASEB J 22, 1009-1020
   Abstract »    Full Text »    PDF »
WNT5A Exhibits Tumor-Suppressive Activity through Antagonizing the Wnt/ -Catenin Signaling, and Is Frequently Methylated in Colorectal Cancer.
J. Ying, H. Li, J. Yu, K. M. Ng, F. F. Poon, S. C. C. Wong, A. T.C. Chan, J. J.Y. Sung, and Q. Tao (2008)
Clin. Cancer Res. 14, 55-61
   Abstract »    Full Text »    PDF »
Noncanonical Wnt signaling promotes apoptosis in thymocyte development.
H. Liang, A. H. Coles, Z. Zhu, J. Zayas, R. Jurecic, J. Kang, and S. N. Jones (2007)
J. Exp. Med. 204, 3077-3084
   Abstract »    Full Text »    PDF »
WNT5A is epigenetically silenced in hematologic malignancies and inhibits leukemia cell growth as a tumor suppressor.
J. Ying, H. Li, Y.-W. Chen, G. Srivastava, Z. Gao, and Q. Tao (2007)
Blood 110, 4130-4131
   Full Text »    PDF »
Identification of the Retinoic Acid-Inducible Gprc5a As a New Lung Tumor Suppressor Gene.
Q. Tao, J. Fujimoto, T. Men, X. Ye, J. Deng, L. Lacroix, J. L. Clifford, L. Mao, C. S. Van Pelt, J. J. Lee, et al. (2007)
J Natl Cancer Inst 99, 1668-1682
   Abstract »    Full Text »    PDF »
Wnt5a is required for proper mammary gland development and TGF-{beta}-mediated inhibition of ductal growth.
K. Roarty and R. Serra (2007)
Development 134, 3929-3939
   Abstract »    Full Text »    PDF »
Parallels between Global Transcriptional Programs of Polarizing Caco-2 Intestinal Epithelial Cells In Vitro and Gene Expression Programs in Normal Colon and Colon Cancer.
A. M. Saaf, J. M. Halbleib, X. Chen, S. T. Yuen, S. Y. Leung, W. J. Nelson, and P. O. Brown (2007)
Mol. Biol. Cell 18, 4245-4260
   Abstract »    Full Text »    PDF »
Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation.
M. J. Nemeth, L. Topol, S. M. Anderson, Y. Yang, and D. M. Bodine (2007)
PNAS 104, 15436-15441
   Abstract »    Full Text »    PDF »
Activation of the Wnt {beta}Catenin Pathway in a Cell Population on the Surface of the Forebrain Is Essential for the Establishment of Olfactory Axon Connections.
A. A. Zaghetto, S. Paina, S. Mantero, N. Platonova, P. Peretto, S. Bovetti, A. Puche, S. Piccolo, and G. R. Merlo (2007)
J. Neurosci. 27, 9757-9768
   Abstract »    Full Text »    PDF »
Wnt5a secretion stimulated by the extracellular calcium-sensing receptor inhibits defective Wnt signaling in colon cancer cells.
R. J. MacLeod, M. Hayes, and I. Pacheco (2007)
Am J Physiol Gastrointest Liver Physiol 293, G403-G411
   Abstract »    Full Text »    PDF »
The Wnt5A/Protein Kinase C Pathway Mediates Motility in Melanoma Cells via the Inhibition of Metastasis Suppressors and Initiation of an Epithelial to Mesenchymal Transition.
S. K. Dissanayake, M. Wade, C. E. Johnson, M. P. O'Connell, P. D. Leotlela, A. D. French, K. V. Shah, K. J. Hewitt, D. T. Rosenthal, F. E. Indig, et al. (2007)
J. Biol. Chem. 282, 17259-17271
   Abstract »    Full Text »    PDF »
Wnt-5a induces Dishevelled phosphorylation and dopaminergic differentiation via a CK1-dependent mechanism.
V. Bryja, G. Schulte, N. Rawal, A. Grahn, and E. Arenas (2007)
J. Cell Sci. 120, 586-595
   Abstract »    Full Text »    PDF »
Distinct Wnt signaling pathways have opposing roles in appendage regeneration.
C. L. Stoick-Cooper, G. Weidinger, K. J. Riehle, C. Hubbert, M. B. Major, N. Fausto, and R. T. Moon (2007)
Development 134, 479-489
   Abstract »    Full Text »    PDF »
beta-Catenin Signaling Pathway Is Crucial for Bone Morphogenetic Protein 2 to Induce New Bone Formation.
Y. Chen, H. C. Whetstone, A. Youn, P. Nadesan, E. C. Y. Chow, A. C. Lin, and B. A. Alman (2007)
J. Biol. Chem. 282, 526-533
   Abstract »    Full Text »    PDF »
Wnt5a Signaling Induces Proliferation and Survival of Endothelial Cells In Vitro and Expression of MMP-1 and Tie-2.
T. N. H. Masckauchan, D. Agalliu, M. Vorontchikhina, A. Ahn, N. L. Parmalee, C.-M. Li, A. Khoo, B. Tycko, A. M.C. Brown, and J. Kitajewski (2006)
Mol. Biol. Cell 17, 5163-5172
   Abstract »    Full Text »    PDF »
Protein-kinase-C-mediated {beta}-catenin phosphorylation negatively regulates the Wnt/{beta}-catenin pathway.
J. Gwak, M. Cho, S.-J. Gong, J. Won, D.-E. Kim, E.-Y. Kim, S. S. Lee, M. Kim, T. K. Kim, J.-G. Shin, et al. (2006)
J. Cell Sci. 119, 4702-4709
   Abstract »    Full Text »    PDF »
Expression of Wnt-5a Is Correlated with Aggressiveness of Gastric Cancer by Stimulating Cell Migration and Invasion.
M. Kurayoshi, N. Oue, H. Yamamoto, M. Kishida, A. Inoue, T. Asahara, W. Yasui, and A. Kikuchi (2006)
Cancer Res. 66, 10439-10448
   Abstract »    Full Text »    PDF »
Jun NH2-terminal kinase (JNK) prevents nuclear beta-catenin accumulation and regulates axis formation in Xenopus embryos.
G. Liao, Q. Tao, M. Kofron, J.-S. Chen, A. Schloemer, R. J. Davis, J.-C. Hsieh, C. Wylie, J. Heasman, and C.-Y. Kuan (2006)
PNAS 103, 16313-16318
   Abstract »    Full Text »    PDF »
Hexachlorophene Inhibits Wnt/beta-Catenin Pathway by Promoting Siah-Mediated beta-Catenin Degradation.
S. Park, J. Gwak, M. Cho, T. Song, J. Won, D.-E. Kim, J.-G. Shin, and S. Oh (2006)
Mol. Pharmacol. 70, 960-966
   Abstract »    Full Text »    PDF »
Wnt-5a/Ca2+-Induced NFAT Activity Is Counteracted by Wnt-5a/Yes-Cdc42-Casein Kinase 1{alpha} Signaling in Human Mammary Epithelial Cells.
J. Dejmek, A. Safholm, C. Kamp Nielsen, T. Andersson, and K. Leandersson (2006)
Mol. Cell. Biol. 26, 6024-6036
   Abstract »    Full Text »    PDF »
Constitutively Active beta-Catenin Promotes Expansion of Multipotent Hematopoietic Progenitors in Culture.
Y. Baba, T. Yokota, H. Spits, K. P. Garrett, S.-I. Hayashi, and P. W. Kincade (2006)
J. Immunol. 177, 2294-2303
   Abstract »    Full Text »    PDF »
Wnt9a signaling is required for joint integrity and regulation of Ihh during chondrogenesis.
D. Spater, T. P. Hill, R. J. O'Sullivan, M. Gruber, D. A. Conner, and C. Hartmann (2006)
Development 133, 3039-3049
   Abstract »    Full Text »    PDF »
Wnt/Frizzled Signaling in the Vasculature: New Angiogenic Factors in Sight.
T. N. H. Masckauchan and J. Kitajewski (2006)
Physiology 21, 181-188
   Abstract »    Full Text »    PDF »
Engrailed-1 Negatively Regulates beta-Catenin Transcriptional Activity by Destabilizing beta-Catenin via a Glycogen Synthase Kinase-3beta-independent Pathway.
L. Bachar-Dahan, J. Goltzmann, A. Yaniv, and A. Gazit (2006)
Mol. Biol. Cell 17, 2572-2580
   Abstract »    Full Text »    PDF »
Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines.
T. Pukrop, F. Klemm, Th. Hagemann, D. Gradl, M. Schulz, S. Siemes, L. Trumper, and C. Binder (2006)
PNAS 103, 5454-5459
   Abstract »    Full Text »    PDF »
Wnt signalling in osteoblasts regulates expression of the receptor activator of NF{kappa}B ligand and inhibits osteoclastogenesis in vitro.
G. J. Spencer, J. C. Utting, S. L. Etheridge, T. R. Arnett, and P. G. Genever (2006)
J. Cell Sci. 119, 1283-1296
   Abstract »    Full Text »    PDF »
Multiple roles of mesenchymal {beta}-catenin during murine limb patterning.
T. P. Hill, M. M. Taketo, W. Birchmeier, and C. Hartmann (2006)
Development 133, 1219-1229
   Abstract »    Full Text »    PDF »
WNT Pathways in the Neonatal Ovine Uterus: Potential Specification of Endometrial Gland Morphogenesis by SFRP2.
K. Hayashi and T. E. Spencer (2006)
Biol Reprod 74, 721-733
   Abstract »    Full Text »    PDF »
Sfrp1 and Sfrp2 regulate anteroposterior axis elongation and somite segmentation during mouse embryogenesis.
W. Satoh, T. Gotoh, Y. Tsunematsu, S. Aizawa, and A. Shimono (2006)
Development 133, 989-999
   Abstract »    Full Text »    PDF »
Foxf1 and Foxf2 control murine gut development by limiting mesenchymal Wnt signaling and promoting extracellular matrix production.
M. Ormestad, J. Astorga, H. Landgren, T. Wang, B. R. Johansson, N. Miura, and P. Carlsson (2006)
Development 133, 833-843
   Abstract »    Full Text »    PDF »
The Wnt-inducible Transcription Factor Twist1 Inhibits Chondrogenesis.
M. I. Reinhold, R. M. Kapadia, Z. Liao, and M. C. Naski (2006)
J. Biol. Chem. 281, 1381-1388
   Abstract »    Full Text »    PDF »
Up-regulation of {beta}-catenin by a viral oncogene correlates with inhibition of the seven in absentia homolog 1 in B lymphoma cells.
K. L. Jang, J. Shackelford, S. Y. Seo, and J. S. Pagano (2005)
PNAS 102, 18431-18436
   Abstract »    Full Text »    PDF »
Wnt Proteins Prevent Apoptosis of Both Uncommitted Osteoblast Progenitors and Differentiated Osteoblasts by {beta}-Catenin-dependent and -independent Signaling Cascades Involving Src/ERK and Phosphatidylinositol 3-Kinase/AKT.
M. Almeida, L. Han, T. Bellido, S. C. Manolagas, and S. Kousteni (2005)
J. Biol. Chem. 280, 41342-41351
   Abstract »    Full Text »    PDF »
Importance of P-Cadherin, {beta}-Catenin, and Wnt5a/Frizzled for Progression of Melanocytic Tumors and Prognosis in Cutaneous Melanoma.
I. M. Bachmann, O. Straume, H. E. Puntervoll, M. B. Kalvenes, and L. A. Akslen (2005)
Clin. Cancer Res. 11, 8606-8614
   Abstract »    Full Text »    PDF »
Wnt-5a Protein Expression in Primary Dukes B Colon Cancers Identifies a Subgroup of Patients with Good Prognosis.
J. Dejmek, A. Dejmek, A. Safholm, A. Sjolander, and T. Andersson (2005)
Cancer Res. 65, 9142-9146
   Abstract »    Full Text »    PDF »
Glycogen Synthase Kinase 3{beta} Functions To Specify Gene-Specific, NF-{kappa}B-Dependent Transcription.
K. A. Steinbrecher, W. Wilson III, P. C. Cogswell, and A. S. Baldwin (2005)
Mol. Cell. Biol. 25, 8444-8455
   Abstract »    Full Text »    PDF »
Estrogen down-regulation of the corepressor N-CoR: Mechanism and implications for estrogen derepression of N-CoR-regulated genes.
J. Frasor, J. M. Danes, C. C. Funk, and B. S. Katzenellenbogen (2005)
PNAS 102, 13153-13157
   Abstract »    Full Text »    PDF »
Hotelling's T2 multivariate profiling for detecting differential expression in microarrays.
Y. Lu, P.-Y. Liu, P. Xiao, and H.-W. Deng (2005)
Bioinformatics 21, 3105-3113
   Abstract »    Full Text »    PDF »
From The Cover: Uterine Wnt/{beta}-catenin signaling is required for implantation.
O. A. Mohamed, M. Jonnaert, C. Labelle-Dumais, K. Kuroda, H. J. Clarke, and D. Dufort (2005)
PNAS 102, 8579-8584
   Abstract »    Full Text »    PDF »
Developmental Regulation of Wnt/{beta}-Catenin Signals Is Required for Growth Plate Assembly, Cartilage Integrity, and Endochondral Ossification.
Y. Tamamura, T. Otani, N. Kanatani, E. Koyama, J. Kitagaki, T. Komori, Y. Yamada, F. Costantini, S. Wakisaka, M. Pacifici, et al. (2005)
J. Biol. Chem. 280, 19185-19195
   Abstract »    Full Text »    PDF »
The Loss of Glypican-3 Induces Alterations in Wnt Signaling.
H. H. Song, W. Shi, Y.-Y. Xiang, and J. Filmus (2005)
J. Biol. Chem. 280, 2116-2125
   Abstract »    Full Text »    PDF »
Noncanonical Wnt signaling regulates midline convergence of organ primordia during zebrafish development.
T. Matsui, A. Raya, Y. Kawakami, C. Callol-Massot, J. Capdevila, C. Rodriguez-Esteban, and J. C. Izpisua Belmonte (2005)
Genes & Dev. 19, 164-175
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882