Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Cell Biol. 163 (4): 723-728

Copyright © 2003 by the Rockefeller University Press.


Report

Cross-talk between the Notch and TGF-ß signaling pathways mediated by interaction of the Notch intracellular domain with Smad3

Andries Blokzijl1, Camilla Dahlqvist2, Eva Reissmann1, Anna Falk2, Annalena Moliner1, Urban Lendahl2, and Carlos F. Ibáñez1

1 Division of Molecular Neurobiology, Department of Neuroscience
2 Department of Cellular and Molecular Biology, Karolinska Institute, 17177 Stockholm, Sweden

Address correspondence to Carlos F. Ibáñez, Dept. of Neuroscience, Karoliska Institute, Retzius v, 17177 Stockholm, Sweden. Tel.: 46-8-524-876-60. Fax: 46-8-33-95-48. email: carlos.ibanez{at}neuro.ki.se

Abstract: The Notch and transforming growth factor-ß (TGF-ß) signaling pathways play critical roles in the control of cell fate during metazoan development. However, mechanisms of cross-talk and signal integration between the two systems are unknown. Here, we demonstrate a functional synergism between Notch and TGF-ß signaling in the regulation of Hes-1, a direct target of the Notch pathway. Activation of TGF-ß signaling up-regulated Hes-1 expression in vitro and in vivo. This effect was abrogated in myogenic cells by a dominant-negative form of CSL, an essential DNA-binding component of the Notch pathway. TGF-ß regulated transcription from the Hes-1 promoter in a Notch-dependent manner, and the intracellular domain of Notch1 (NICD) cooperated synergistically with Smad3, an intracellular transducer of TGF-ß signals, to induce the activation of synthetic promoters containing multimerized CSL- or Smad3-binding sites. NICD and Smad3 were shown to interact directly, both in vitro and in cells, in a ligand-dependent manner, and Smad3 could be recruited to CSL-binding sites on DNA in the presence of CSL and NICD. These findings indicate that Notch and TGF-ß signals are integrated by direct protein–protein interactions between the signal-transducing intracellular elements from both pathways.

Key Words: Hes-1; C2C12; CSL; Smad4; neural stem cell


A. Blokzijl and C. Dahlqvist contributed equally to this paper.

Abbreviations used in this paper: E, embryonic day; NICD, Notch intracellular domain.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Tumor-Infiltrating Myeloid Cells Activate Dll4/Notch/TGF-{beta} Signaling to Drive Malignant Progression.
H. Ohnuki, K. Jiang, D. Wang, O. Salvucci, H. Kwak, D. Sanchez-Martin, D. Maric, and G. Tosato (2014)
Cancer Res. 74, 2038-2049
   Abstract »    Full Text »    PDF »
TRAF6 Stimulates the Tumor-Promoting Effects of TGF{beta} Type I Receptor Through Polyubiquitination and Activation of Presenilin 1.
S. K. Gudey, R. Sundar, Y. Mu, A. Wallenius, G. Zang, A. Bergh, C.-H. Heldin, and M. Landstrom (2014)
Science Signaling 7, ra2
   Abstract »    Full Text »    PDF »
Functionality of Endothelial Cells and Pericytes From Human Pluripotent Stem Cells Demonstrated in Cultured Vascular Plexus and Zebrafish Xenografts.
V. V. Orlova, Y. Drabsch, C. Freund, S. Petrus-Reurer, F. E. van den Hil, S. Muenthaisong, P. t. Dijke, and C. L. Mummery (2014)
Arterioscler Thromb Vasc Biol 34, 177-186
   Abstract »    Full Text »    PDF »
Growth differentiation factor 5 is a key physiological regulator of dendrite growth during development.
C. Osorio, P. J. Chacon, L. Kisiswa, M. White, S. Wyatt, A. Rodriguez-Tebar, and A. M. Davies (2013)
Development 140, 4751-4762
   Abstract »    Full Text »    PDF »
Notch/Rbpj{kappa} signaling regulates progenitor maintenance and differentiation of hypothalamic arcuate neurons.
P. K. Aujla, G. T. Naratadam, L. Xu, and L. T. Raetzman (2013)
Development 140, 3511-3521
   Abstract »    Full Text »    PDF »
Loss of TGF-{beta} Adaptor {beta}2SP Activates Notch Signaling and SOX9 Expression in Esophageal Adenocarcinoma.
S. Song, D. M. Maru, J. A. Ajani, C.-H. Chan, S. Honjo, H.-K. Lin, A. Correa, W. L. Hofstetter, M. Davila, J. Stroehlein, et al. (2013)
Cancer Res. 73, 2159-2169
   Abstract »    Full Text »    PDF »
Cartilage-specific RBPj{kappa}-dependent and -independent Notch signals regulate cartilage and bone development.
A. Kohn, Y. Dong, A. J. Mirando, A. M. Jesse, T. Honjo, M. J. Zuscik, R. J. O'Keefe, and M. J. Hilton (2012)
Development 139, 1198-1212
   Abstract »    Full Text »    PDF »
Notch signaling: simplicity in design, versatility in function.
E. R. Andersson, R. Sandberg, and U. Lendahl (2011)
Development 138, 3593-3612
   Abstract »    Full Text »    PDF »
Notch Ligand Delta-Like 4 Blockade Alleviates Experimental Autoimmune Encephalomyelitis by Promoting Regulatory T Cell Development.
R. Bassil, B. Zhu, Y. Lahoud, L. V. Riella, H. Yagita, W. Elyaman, and S. J. Khoury (2011)
J. Immunol. 187, 2322-2328
   Abstract »    Full Text »    PDF »
Human myostatin negatively regulates human myoblast growth and differentiation.
C. McFarlane, G. Z. Hui, W. Z. W. Amanda, H. Y. Lau, S. Lokireddy, G. XiaoJia, V. Mouly, G. Butler-Browne, P. D. Gluckman, M. Sharma, et al. (2011)
Am J Physiol Cell Physiol 301, C195-C203
   Abstract »    Full Text »    PDF »
Metalloprotease-Disintegrin ADAM12 Expression Is Regulated by Notch Signaling via MicroRNA-29.
H. Li, E. Solomon, S. Duhachek Muggy, D. Sun, and A. Zolkiewska (2011)
J. Biol. Chem. 286, 21500-21510
   Abstract »    Full Text »    PDF »
BMP signaling orchestrates photoreceptor specification in the zebrafish pineal gland in collaboration with Notch.
A. Quillien, B. Blanco-Sanchez, C. Halluin, J. C. Moore, N. D. Lawson, P. Blader, and E. Cau (2011)
Development 138, 2293-2302
   Abstract »    Full Text »    PDF »
Cardiopoietic Factors: Extracellular Signals for Cardiac Lineage Commitment.
M. Noseda, T. Peterkin, F. C. Simoes, R. Patient, and M. D. Schneider (2011)
Circ. Res. 108, 129-152
   Abstract »    Full Text »    PDF »
Notch and Transforming Growth Factor-{beta} (TGF{beta}) Signaling Pathways Cooperatively Regulate Vascular Smooth Muscle Cell Differentiation.
Y. Tang, S. Urs, J. Boucher, T. Bernaiche, D. Venkatesh, D. B. Spicer, C. P. H. Vary, and L. Liaw (2010)
J. Biol. Chem. 285, 17556-17563
   Abstract »    Full Text »    PDF »
RBPj{kappa}-dependent Notch signaling regulates mesenchymal progenitor cell proliferation and differentiation during skeletal development.
Y. Dong, A. M. Jesse, A. Kohn, L. M. Gunnell, T. Honjo, M. J. Zuscik, R. J. O'Keefe, and M. J. Hilton (2010)
Development 137, 1461-1471
   Abstract »    Full Text »    PDF »
The regulation of TGF{beta} signal transduction.
A. Moustakas and C.-H. Heldin (2009)
Development 136, 3699-3714
   Abstract »    Full Text »    PDF »
Differential Regulation of Transforming Growth Factor {beta} Signaling Pathways by Notch in Human Endothelial Cells.
Y. Fu, A. Chang, L. Chang, K. Niessen, S. Eapen, A. Setiadi, and A. Karsan (2009)
J. Biol. Chem. 284, 19452-19462
   Abstract »    Full Text »    PDF »
Notch signaling controls liver development by regulating biliary differentiation.
Y. Zong, A. Panikkar, J. Xu, A. Antoniou, P. Raynaud, F. Lemaigre, and B. Z. Stanger (2009)
Development 136, 1727-1739
   Abstract »    Full Text »    PDF »
Notch1 and TGF{beta}1 cooperatively regulate Foxp3 expression and the maintenance of peripheral regulatory T cells.
J. B. Samon, A. Champhekar, L. M. Minter, J. C. Telfer, L. Miele, A. Fauq, P. Das, T. E. Golde, and B. A. Osborne (2008)
Blood 112, 1813-1821
   Abstract »    Full Text »    PDF »
Slug is a direct Notch target required for initiation of cardiac cushion cellularization.
K. Niessen, Y. Fu, L. Chang, P. A. Hoodless, D. McFadden, and A. Karsan (2008)
J. Cell Biol. 182, 315-325
   Abstract »    Full Text »    PDF »
The FoxO3a gene is a key negative target of canonical Notch signalling in the keratinocyte UVB response.
A. Mandinova, K. Lefort, A. T. di Vignano, W. Stonely, P. Ostano, G. Chiorino, H. Iwaki, J. Nakanishi, and G. P. Dotto (2008)
EMBO J. 27, 1243-1254
   Abstract »    Full Text »    PDF »
Crosstalk Between Vascular Endothelial Growth Factor, Notch, and Transforming Growth Factor-{beta} in Vascular Morphogenesis.
M. T. Holderfield and C. C.W. Hughes (2008)
Circ. Res. 102, 637-652
   Abstract »    Full Text »    PDF »
Notch1 Signaling and Regulatory T Cell Function.
N. Asano, T. Watanabe, A. Kitani, I. J. Fuss, and W. Strober (2008)
J. Immunol. 180, 2796-2804
   Abstract »    Full Text »    PDF »
Transforming Growth Factor- (TGF- 1) Down-regulates Notch3 in Fibroblasts to Promote Smooth Muscle Gene Expression.
S. Kennard, H. Liu, and B. Lilly (2008)
J. Biol. Chem. 283, 1324-1333
   Abstract »    Full Text »    PDF »
Syntenin mediates Delta1-induced cohesiveness of epidermal stem cells in culture.
S. Estrach, J. Legg, and F. M. Watt (2007)
J. Cell Sci. 120, 2944-2952
   Abstract »    Full Text »    PDF »
TGF-{beta} signaling is essential for joint morphogenesis.
A. Spagnoli, L. O'Rear, R. L. Chandler, F. Granero-Molto, D. P. Mortlock, A. E. Gorska, J. A. Weis, L. Longobardi, A. Chytil, K. Shimer, et al. (2007)
J. Cell Biol. 177, 1105-1117
   Abstract »    Full Text »    PDF »
Smad4 is critical for self-renewal of hematopoietic stem cells.
G. Karlsson, U. Blank, J. L. Moody, M. Ehinger, S. Singbrant, C.-X. Deng, and S. Karlsson (2007)
J. Exp. Med. 204, 467-474
   Abstract »    Full Text »    PDF »
Notch signaling is necessary for epithelial growth arrest by TGF-{beta}.
H. Niimi, K. Pardali, M. Vanlandewijck, C.-H. Heldin, and A. Moustakas (2007)
J. Cell Biol. 176, 695-707
   Abstract »    Full Text »    PDF »
Cardiopoietic programming of embryonic stem cells for tumor-free heart repair.
A. Behfar, C. Perez-Terzic, R. S. Faustino, D. K. Arrell, D. M. Hodgson, S. Yamada, M. Puceat, N. Niederlander, A. E Alekseev, L. V. Zingman, et al. (2007)
J. Exp. Med. 204, 405-420
   Abstract »    Full Text »    PDF »
Smad7 promotes self-renewal of hematopoietic stem cells.
U. Blank, G. Karlsson, J. L. Moody, T. Utsugisawa, M. Magnusson, S. Singbrant, J. Larsson, and S. Karlsson (2006)
Blood 108, 4246-4254
   Abstract »    Full Text »    PDF »
Notch, Epidermal Growth Factor Receptor, and beta1-Integrin Pathways Are Coordinated in Neural Stem Cells.
L. S. Campos, L. Decker, V. Taylor, and W. Skarnes (2006)
J. Biol. Chem. 281, 5300-5309
   Abstract »    Full Text »    PDF »
Activation of the Notch pathway in Down syndrome: cross-talk of Notch and APP.
D. F. Fischer, R. van Dijk, J. A. Sluijs, S. M. Nair, M. Racchi, C. N. Levelt, F. W. van Leeuwen, and E. M. Hol (2005)
FASEB J 19, 1451-1458
   Abstract »    Full Text »    PDF »
Critical Regulation of Bone Morphogenetic Protein-induced Osteoblastic Differentiation by Delta1/Jagged1-activated Notch1 Signaling.
M. Nobta, T. Tsukazaki, Y. Shibata, C. Xin, T. Moriishi, S. Sakano, H. Shindo, and A. Yamaguchi (2005)
J. Biol. Chem. 280, 15842-15848
   Abstract »    Full Text »    PDF »
GDF11 modulates NGN3+ islet progenitor cell number and promotes {beta}-cell differentiation in pancreas development.
E. B. Harmon, A. A. Apelqvist, N. G. Smart, X. Gu, D. H. Osborne, and S. K. Kim (2004)
Development 131, 6163-6174
   Abstract »    Full Text »    PDF »
Interplay of Glucagon-Like Peptide-1 and Transforming Growth Factor-{beta} Signaling in Insulin-Positive Differentiation of AR42J Cells.
K.-H. Yew, K. L. Prasadan, B. L. Preuett, M. J. Hembree, C. R. McFall, C. L. Benjes, A. R. Crowley, S. L. Sharp, Z. Li, S. S. Tulachan, et al. (2004)
Diabetes 53, 2824-2835
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882