Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Cell Biol. 167 (4): 661-672

Copyright © 2004 by the Rockefeller University Press.


Control of mitochondrial motility and distribution by the calcium signal

a homeostatic circuit

Muqing Yi, David Weaver, , and György Hajnóczky

Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107

Correspondence to Gyorgy Hajnóczky: gyorgy.hajnoczky{at}

Abstract: Mitochondria are dynamic organelles in cells. The control of mitochondrial motility by signaling mechanisms and the significance of rapid changes in motility remains elusive. In cardiac myoblasts, mitochondria were observed close to the microtubular array and displayed both short- and long-range movements along microtubules. By clamping cytoplasmic [Ca2+] ([Ca2+]c) at various levels, mitochondrial motility was found to be regulated by Ca2+ in the physiological range. Maximal movement was obtained at resting [Ca2+]c with complete arrest at 1–2 µM. Movement was fully recovered by returning to resting [Ca2+]c, and inhibition could be repeated with no apparent desensitization. The inositol 1,4,5-trisphosphate– or ryanodine receptor-mediated [Ca2+]c signal also induced a decrease in mitochondrial motility. This decrease followed the spatial and temporal pattern of the [Ca2+]c signal. Diminished mitochondrial motility in the region of the [Ca2+]c rise promotes recruitment of mitochondria to enhance local Ca2+ buffering and energy supply. This mechanism may provide a novel homeostatic circuit in calcium signaling.

Abbreviations used in this paper: {Delta}{Psi}m, mitochondrial membrane potential; Caff, caffeine; ECM, extracellular medium; Iono, Ionomycin; IP3, inositol 1,4,5-trisphosphate; MF, microfilament, mitoYFP, enhanced-YFP targeted to the mitochondrial matrix; MT, microtubule, RyR, ryanodine receptor; Tg, thapsigargin; VP, vasopressin.

Mitochondrial trafficking and anchoring in neurons: New insight and implications.
Z.-H. Sheng (2014)
J. Cell Biol. 204, 1087-1098
   Abstract »    Full Text »    PDF »
Synaptic abnormalities in a Drosophila model of Alzheimer's disease.
S. D. Mhatre, V. Satyasi, M. Killen, B. E. Paddock, R. D. Moir, A. J. Saunders, and D. R. Marenda (2014)
Dis. Model. Mech. 7, 373-385
   Abstract »    Full Text »    PDF »
A Functional Interplay between the Small GTPase Rab11a and Mitochondria-shaping Proteins Regulates Mitochondrial Positioning and Polarization of the Actin Cytoskeleton Downstream of Src Family Kinases.
M.-C. Landry, C. Champagne, M.-C. Boulanger, A. Jette, M. Fuchs, C. Dziengelewski, and J. N. Lavoie (2014)
J. Biol. Chem. 289, 2230-2249
   Abstract »    Full Text »    PDF »
Brain-derived Neurotrophic Factor (BDNF)-induced Mitochondrial Motility Arrest and Presynaptic Docking Contribute to BDNF-enhanced Synaptic Transmission.
B. Su, Y.-S. Ji, X.-l. Sun, X.-H. Liu, and Z.-Y. Chen (2014)
J. Biol. Chem. 289, 1213-1226
   Abstract »    Full Text »    PDF »
Role of Kinesin-1 in the Pathogenesis of SPG10, a Rare Form of Hereditary Spastic Paraplegia.
K. Kawaguchi (2013)
Neuroscientist 19, 336-344
   Abstract »    Full Text »    PDF »
Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport.
Y. Chen and Z.-H. Sheng (2013)
J. Cell Biol. 202, 351-364
   Abstract »    Full Text »    PDF »
Interactions between sarco-endoplasmic reticulum and mitochondria in cardiac and skeletal muscle - pivotal roles in Ca2+ and reactive oxygen species signaling.
V. Eisner, G. Csordas, and G. Hajnoczky (2013)
J. Cell Sci. 126, 2965-2978
   Abstract »    Full Text »    PDF »
Mitochondrial Trafficking in Neurons.
T. L. Schwarz (2013)
Cold Spring Harb Perspect Biol 5, a011304
   Abstract »    Full Text »    PDF »
AMPK attenuates microtubule proliferation in cardiac hypertrophy.
J. T. Fassett, X. Hu, X. Xu, Z. Lu, P. Zhang, Y. Chen, and R. J. Bache (2013)
Am J Physiol Heart Circ Physiol 304, H749-H758
   Abstract »    Full Text »    PDF »
Lysosomes shape Ins(1,4,5)P3-evoked Ca2+ signals by selectively sequestering Ca2+ released from the endoplasmic reticulum.
C. I. Lopez-Sanjurjo, S. C. Tovey, D. L. Prole, and C. W. Taylor (2013)
J. Cell Sci. 126, 289-300
   Abstract »    Full Text »    PDF »
Mitochondrial Motility and Vascular Smooth Muscle Proliferation.
S. Chalmers, C. Saunter, C. Wilson, P. Coats, J. M. Girkin, and J. G. McCarron (2012)
Arterioscler Thromb Vasc Biol 32, 3000-3011
   Abstract »    Full Text »    PDF »
Amyotrophic lateral sclerosis-associated mutant VAPBP56S perturbs calcium homeostasis to disrupt axonal transport of mitochondria.
G. M. Morotz, K. J. De Vos, A. Vagnoni, S. Ackerley, C. E. Shaw, and C. C. J. Miller (2012)
Hum. Mol. Genet. 21, 1979-1988
   Abstract »    Full Text »    PDF »
The axonal transport of mitochondria.
W. M. Saxton and P. J. Hollenbeck (2012)
J. Cell Sci. 125, 2095-2104
   Abstract »    Full Text »    PDF »
Mytoe: automatic analysis of mitochondrial dynamics.
E. Lihavainen, J. Makela, J. N. Spelbrink, and A. S. Ribeiro (2012)
Bioinformatics 28, 1050-1051
   Abstract »    Full Text »    PDF »
Links between Electrophysiological and Molecular Pathology of Amyotrophic Lateral Sclerosis.
K. A. Quinlan (2011)
Integr. Comp. Biol. 51, 913-925
   Abstract »    Full Text »    PDF »
Calcium microdomains at the immunological synapse: how ORAI channels, mitochondria and calcium pumps generate local calcium signals for efficient T-cell activation.
A. Quintana, M. Pasche, C. Junker, D. Al-Ansary, H. Rieger, C. Kummerow, L. Nunez, C. Villalobos, P. Meraner, U. Becherer, et al. (2011)
EMBO J. 30, 3895-3912
   Abstract »    Full Text »    PDF »
Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress.
R. Bravo, J. M. Vicencio, V. Parra, R. Troncoso, J. P. Munoz, M. Bui, C. Quiroga, A. E. Rodriguez, H. E. Verdejo, J. Ferreira, et al. (2011)
J. Cell Sci. 124, 2143-2152
   Abstract »    Full Text »    PDF »
Trafficking Kinesin Protein (TRAK)-mediated Transport of Mitochondria in Axons of Hippocampal Neurons.
K. Brickley and F. A. Stephenson (2011)
J. Biol. Chem. 286, 18079-18092
   Abstract »    Full Text »    PDF »
Trafficking of UL37 Proteins into Mitochondrion-Associated Membranes during Permissive Human Cytomegalovirus Infection.
P. Bozidis, C. D. Williamson, D. S. Wong, and A. M. Colberg-Poley (2010)
J. Virol. 84, 7898-7903
   Abstract »    Full Text »    PDF »
Mitochondrial Ca2+ uptake and not mitochondrial motility is required for STIM1-Orai1-dependent store-operated Ca2+ entry.
S. Naghdi, M. Waldeck-Weiermair, I. Fertschai, M. Poteser, W. F. Graier, and R. Malli (2010)
J. Cell Sci. 123, 2553-2564
   Abstract »    Full Text »    PDF »
Biophysical properties of mitochondrial fusion events in pancreatic {beta}-cells and cardiac cells unravel potential control mechanisms of its selectivity.
G. Twig, X. Liu, M. Liesa, J. D. Wikstrom, A. J. A. Molina, G. Las, G. Yaniv, G. Hajnoczky, and O. S. Shirihai (2010)
Am J Physiol Cell Physiol 299, C477-C487
   Abstract »    Full Text »    PDF »
Activity-Dependent Regulation of Mitochondrial Motility by Calcium and Na/K-ATPase at Nodes of Ranvier of Myelinated Nerves.
C. L. Zhang, P. L. Ho, D. B. Kintner, D. Sun, and S. Y. Chiu (2010)
J. Neurosci. 30, 3555-3566
   Abstract »    Full Text »    PDF »
Mitochondrial 'kiss-and-run': interplay between mitochondrial motility and fusion-fission dynamics.
X. Liu, D. Weaver, O. Shirihai, and G. Hajnoczky (2009)
EMBO J. 28, 3074-3089
   Abstract »    Full Text »    PDF »
Dynein Light Chain LC8 Regulates Syntaphilin-Mediated Mitochondrial Docking in Axons.
Y.-M. Chen, C. Gerwin, and Z.-H. Sheng (2009)
J. Neurosci. 29, 9429-9438
   Abstract »    Full Text »    PDF »
Regulation of the Human Cardiac Mitochondrial Ca2+ Uptake by 2 Different Voltage-Gated Ca2+ Channels.
G. Michels, I. F. Khan, J. Endres-Becker, D. Rottlaender, S. Herzig, A. Ruhparwar, T. Wahlers, and U. C. Hoppe (2009)
Circulation 119, 2435-2443
   Abstract »    Full Text »    PDF »
Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase.
M. Saotome, D. Safiulina, G. Szabadkai, S. Das, A. Fransson, P. Aspenstrom, R. Rizzuto, and G. Hajnoczky (2008)
PNAS 105, 20728-20733
   Abstract »    Full Text »    PDF »
Cytosolic Ca2+ prevents the subplasmalemmal clustering of STIM1: an intrinsic mechanism to avoid Ca2+ overload.
R. Malli, S. Naghdi, C. Romanin, and W. F. Graier (2008)
J. Cell Sci. 121, 3133-3139
   Abstract »    Full Text »    PDF »
G{alpha}12 is targeted to the mitochondria and affects mitochondrial morphology and motility.
A. V. Andreeva, M. A. Kutuzov, and T. A. Voyno-Yasenetskaya (2008)
FASEB J 22, 2821-2831
   Abstract »    Full Text »    PDF »
Inherited complex I deficiency is associated with faster protein diffusion in the matrix of moving mitochondria.
W. J. H. Koopman, F. Distelmaier, M. A. Hink, S. Verkaart, M. Wijers, J. Fransen, J. A. M. Smeitink, and P. H. G. M. Willems (2008)
Am J Physiol Cell Physiol 294, C1124-C1132
   Abstract »    Full Text »    PDF »
Mitochondria: The Hub of Cellular Ca2+ Signaling.
G. Szabadkai and M. R. Duchen (2008)
Physiology 23, 84-94
   Abstract »    Full Text »    PDF »
Mitochondrial and Secretory Human Cytomegalovirus UL37 Proteins Traffic into Mitochondrion-Associated Membranes of Human Cells.
P. Bozidis, C. D. Williamson, and A. M. Colberg-Poley (2008)
J. Virol. 82, 2715-2726
   Abstract »    Full Text »    PDF »
Mitochondrial Dynamics and Peripheral Neuropathy.
R. H. Baloh (2008)
Neuroscientist 14, 12-18
   Abstract »    PDF »
Reversible interactions between smooth domains of the endoplasmic reticulum and mitochondria are regulated by physiological cytosolic Ca2+ levels.
J. G. Goetz, H. Genty, P. St-Pierre, T. Dang, B. Joshi, R. Sauve, W. Vogl, and I. R. Nabi (2007)
J. Cell Sci. 120, 3553-3564
   Abstract »    Full Text »    PDF »
T cell activation requires mitochondrial translocation to the immunological synapse.
A. Quintana, C. Schwindling, A. S. Wenning, U. Becherer, J. Rettig, E. C. Schwarz, and M. Hoth (2007)
PNAS 104, 14418-14423
   Abstract »    Full Text »    PDF »
Hepatitis B Virus X Protein Induces Perinuclear Mitochondrial Clustering in Microtubule- and Dynein-Dependent Manners.
S. Kim, H.-Y. Kim, S. Lee, S. W. Kim, S. Sohn, K. Kim, and H. Cho (2007)
J. Virol. 81, 1714-1726
   Abstract »    Full Text »    PDF »
Mitochondria and neuronal activity.
O. Kann and R. Kovacs (2007)
Am J Physiol Cell Physiol 292, C641-C657
   Abstract »    Full Text »    PDF »
Sustained Activity of Calcium Release-activated Calcium Channels Requires Translocation of Mitochondria to the Plasma Membrane.
A. Quintana, E. C. Schwarz, C. Schwindling, P. Lipp, L. Kaestner, and M. Hoth (2006)
J. Biol. Chem. 281, 40302-40309
   Abstract »    Full Text »    PDF »
Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels.
G. Szabadkai, K. Bianchi, P. Varnai, D. De Stefani, M. R. Wieckowski, D. Cavagna, A. I. Nagy, T. Balla, and R. Rizzuto (2006)
J. Cell Biol. 175, 901-911
   Abstract »    Full Text »    PDF »
ER vesicles and mitochondria move and communicate at synapses.
S. L. Mironov and N. Symonchuk (2006)
J. Cell Sci. 119, 4926-4934
   Abstract »    Full Text »    PDF »
Mitochondrial transport in processes of cortical neurons is independent of intracellular calcium.
L. Beltran-Parrazal, H. E. Lopez-Valdes, K. C. Brennan, M. Diaz-Munoz, J. de Vellis, and A. C. Charles (2006)
Am J Physiol Cell Physiol 291, C1193-C1197
   Abstract »    Full Text »    PDF »
Nitric oxide regulation of mitochondrial oxygen consumption I: cellular physiology.
C. Giulivi, K. Kato, and C. E. Cooper (2006)
Am J Physiol Cell Physiol 291, C1225-C1231
   Abstract »    Full Text »    PDF »
The Mitochondrial Fission Protein hFis1 Requires the Endoplasmic Reticulum Gateway to Induce Apoptosis.
E. Alirol, D. James, D. Huber, A. Marchetto, L. Vergani, J.-C. Martinou, and L. Scorrano (2006)
Mol. Biol. Cell 17, 4593-4605
   Abstract »    Full Text »    PDF »
Structural and functional features and significance of the physical linkage between ER and mitochondria.
G. Csordas, C. Renken, P. Varnai, L. Walter, D. Weaver, K. F. Buttle, T. Balla, C. A. Mannella, and G. Hajnoczky (2006)
J. Cell Biol. 174, 915-921
   Abstract »    Full Text »    PDF »
(De)constructing Mitochondria: What For?.
K. S. Dimmer and L. Scorrano (2006)
Physiology 21, 233-241
   Abstract »    Full Text »    PDF »
Fate of E-cadherin in Early RPE Cultures: Transient Accumulation of Truncated Peptides at Nonjunctional Sites.
J. M. Burke and J. Hong (2006)
Invest. Ophthalmol. Vis. Sci. 47, 3635-3643
   Abstract »    Full Text »    PDF »
Mitochondrial trafficking to synapses in cultured primary cortical neurons..
D. T. W. Chang, A. S. Honick, and I. J. Reynolds (2006)
J. Neurosci. 26, 7035-7045
   Abstract »    Full Text »    PDF »
Zn2+ Inhibits Mitochondrial Movement in Neurons by Phosphatidylinositol 3-Kinase Activation.
L. M. Malaiyandi, A. S. Honick, G. L. Rintoul, Q. J. Wang, and I. J. Reynolds (2005)
J. Neurosci. 25, 9507-9514
   Abstract »    Full Text »    PDF »
Myosin Va Transports Dense Core Secretory Vesicles in Pancreatic MIN6 {beta}-Cells.
A. Varadi, T. Tsuboi, and G. A. Rutter (2005)
Mol. Biol. Cell 16, 2670-2680
   Abstract »    Full Text »    PDF »
Neurotoxic Calcium Transfer from Endoplasmic Reticulum to Mitochondria Is Regulated by Cyclin-Dependent Kinase 5-Dependent Phosphorylation of Tau.
F. Darios, M.-P. Muriel, M. E. Khondiker, A. Brice, and M. Ruberg (2005)
J. Neurosci. 25, 4159-4168
   Abstract »    Full Text »    PDF »
Regulation of Mitochondrial Dynamics: Another Process Modulated by Ca2+ Signals?.
Y. Yoon (2005)
Sci. STKE 2005, pe18
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882