Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Cell Biol. 168 (2): 179-184

Copyright © 2005 by the Rockefeller University Press.


A multistep, GTP-driven mechanism controlling the dynamic cycling of nucleostemin

Robert Y.L. Tsai1,2, and Ronald D.G. McKay1

1 Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
2 Center for Cancer Biology and Nutrition, Alkek Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030

Correspondence to R.Y.L. Tsai: rtsai{at}

Abstract Back to Top

Abstract: Nucleostemin (NS) was identified as a stem cell– and cancer cell–enriched nucleolar protein that controls the proliferation of these cells. Here, we report the mechanism that regulates its dynamic shuttling between the nucleolus and nucleoplasm. The nucleolar residence of nucleostemin involves a transient and a long-term binding by the basic and GTP-binding domains, and a dissociation mechanism mediated by the COOH-terminal region. This cycle is propelled by the GTP binding state of nucleostemin. We propose that a rapid nucleostemin cycle is designed to translate extra- and intra-cellular signals into the amount of nucleostemin in the nucleolus in a bidirectional and fast manner.

Abbreviations used in this paper: Act-D, actinomycin D; iFRAP, inverse FRAP; MPA, mycophenolic acid; NS, nucleostemin.

The Retinoblastoma Protein Selectively Represses E2F1 Targets via a TAAC DNA Element during Cellular Senescence.
T. Chen, L. Xue, J. Niu, L. Ma, N. Li, X. Cao, Q. Li, M. Wang, W. Zhao, G. Li, et al. (2012)
J. Biol. Chem. 287, 37540-37551
   Abstract »    Full Text »    PDF »
Nucleostemin prevents telomere damage by promoting PML-IV recruitment to SUMOylated TRF1.
J. K. Hsu, T. Lin, and R. Y. L. Tsai (2012)
J. Cell Biol. 197, 613-624
   Abstract »    Full Text »    PDF »
A nucleostemin-like GTPase required for normal apical and floral meristem development in Arabidopsis.
X. Wang, D. K. Gingrich, Y. Deng, and Z. Hong (2012)
Mol. Biol. Cell 23, 1446-1456
   Abstract »    Full Text »    PDF »
Ubiquitin- and MDM2 E3 Ligase-independent Proteasomal Turnover of Nucleostemin in Response to GTP Depletion.
D. Lo, M.-S. Dai, X.-X. Sun, S. X. Zeng, and H. Lu (2012)
J. Biol. Chem. 287, 10013-10020
   Abstract »    Full Text »    PDF »
Nucleostemin inhibits TRF1 dimerization and shortens its dynamic association with the telomere.
L. Meng, J. K. Hsu, Q. Zhu, T. Lin, and R. Y. L. Tsai (2011)
J. Cell Sci. 124, 3706-3714
   Abstract »    Full Text »    PDF »
The nucleolus directly regulates p53 export and degradation.
M. T. Boyd, N. Vlatkovic, and C. P. Rubbi (2011)
J. Cell Biol. 194, 689-703
   Abstract »    Full Text »    PDF »
Reactive Oxygen Species Regulate Nucleostemin Oligomerization and Protein Degradation.
M. Huang, P. Whang, J. V. Chodaparambil, D. A. Pollyea, B. Kusler, L. Xu, D. W. Felsher, and B. S. Mitchell (2011)
J. Biol. Chem. 286, 11035-11046
   Abstract »    Full Text »    PDF »
The Nucleolus.
T. Pederson (2011)
Cold Spring Harb Perspect Biol 3, a000638
   Abstract »    Full Text »    PDF »
Biogenesis of Nuclear Bodies.
M. Dundr and T. Misteli (2010)
Cold Spring Harb Perspect Biol 2, a000711
   Abstract »    Full Text »    PDF »
Two-step colocalization of MORC3 with PML nuclear bodies.
Y. Mimura, K. Takahashi, K. Kawata, T. Akazawa, and N. Inoue (2010)
J. Cell Sci. 123, 2014-2024
   Abstract »    Full Text »    PDF »
Knockdown of the Drosophila GTPase Nucleostemin 1 Impairs Large Ribosomal Subunit Biogenesis, Cell Growth, and Midgut Precursor Cell Maintenance.
R. Rosby, Z. Cui, E. Rogers, M. A. deLivron, V. L. Robinson, and P. J. DiMario (2009)
Mol. Biol. Cell 20, 4424-4434
   Abstract »    Full Text »    PDF »
GNL3L stabilizes the TRF1 complex and promotes mitotic transition.
Q. Zhu, L. Meng, J. K. Hsu, T. Lin, J. Teishima, and R. Y.L. Tsai (2009)
J. Cell Biol. 185, 827-839
   Abstract »    Full Text »    PDF »
Depletion of Guanine Nucleotides Leads to the Mdm2-Dependent Proteasomal Degradation of Nucleostemin.
M. Huang, K. Itahana, Y. Zhang, and B. S. Mitchell (2009)
Cancer Res. 69, 3004-3012
   Abstract »    Full Text »    PDF »
In search of nonribosomal nucleolar protein function and regulation.
T. Pederson and R. Y.L. Tsai (2009)
J. Cell Biol. 184, 771-776
   Abstract »    Full Text »    PDF »
Critical Role of Nucleostemin in Pre-rRNA Processing.
L. Romanova, A. Grand, L. Zhang, S. Rayner, N. Katoku-Kikyo, S. Kellner, and N. Kikyo (2009)
J. Biol. Chem. 284, 4968-4977
   Abstract »    Full Text »    PDF »
Nucleoplasmic mobilization of nucleostemin stabilizes MDM2 and promotes G2-M progression and cell survival.
L. Meng, T. Lin, and R. Y. L. Tsai (2008)
J. Cell Sci. 121, 4037-4046
   Abstract »    Full Text »    PDF »
Aberrant Expression of Nucleostemin Activates p53 and Induces Cell Cycle Arrest via Inhibition of MDM2.
M.-S. Dai, X.-X. Sun, and H. Lu (2008)
Mol. Cell. Biol. 28, 4365-4376
   Abstract »    Full Text »    PDF »
Nucleophosmin Is a Binding Partner of Nucleostemin in Human Osteosarcoma Cells.
H. Ma and T. Pederson (2008)
Mol. Biol. Cell 19, 2870-2875
   Abstract »    Full Text »    PDF »
Mycophenolic Acid Activation of p53 Requires Ribosomal Proteins L5 and L11.
X.-X. Sun, M.-S. Dai, and H. Lu (2008)
J. Biol. Chem. 283, 12387-12392
   Abstract »    Full Text »    PDF »
Nucleolar Trafficking of Nucleostemin Family Proteins: Common versus Protein-Specific Mechanisms.
L. Meng, Q. Zhu, and R. Y. L. Tsai (2007)
Mol. Cell. Biol. 27, 8670-8682
   Abstract »    Full Text »    PDF »
Identification of a Common Subnuclear Localization Signal.
K. Mekhail, L. Rivero-Lopez, A. Al-Masri, C. Brandon, M. Khacho, and S. Lee (2007)
Mol. Biol. Cell 18, 3966-3977
   Abstract »    Full Text »    PDF »
GNL3L inhibits activity of estrogen-related receptor {gamma} by competing for coactivator binding.
H. Yasumoto, L. Meng, T. Lin, Q. Zhu, and R. Y. L. Tsai (2007)
J. Cell Sci. 120, 2532-2543
   Abstract »    Full Text »    PDF »
Depletion of the Nucleolar Protein Nucleostemin Causes G1 Cell Cycle Arrest via the p53 Pathway.
H. Ma and T. Pederson (2007)
Mol. Biol. Cell 18, 2630-2635
   Abstract »    Full Text »    PDF »
Dynamic Regulation of p53 Subnuclear Localization and Senescence by MORC3.
K. Takahashi, N. Yoshida, N. Murakami, K. Kawata, H. Ishizaki, M. Tanaka-Okamoto, J. Miyoshi, A. R. Zinn, H. Shime, and N. Inoue (2007)
Mol. Biol. Cell 18, 1701-1709
   Abstract »    Full Text »    PDF »
The BRCT domain of mammalian Pes1 is crucial for nucleolar localization and rRNA processing.
M. Holzel, T. Grimm, M. Rohrmoser, A. Malamoussi, T. Harasim, A. Gruber-Eber, E. Kremmer, and D. Eick (2007)
Nucleic Acids Res. 35, 789-800
   Abstract »    Full Text »    PDF »
Multiple controls regulate nucleostemin partitioning between nucleolus and nucleoplasm.
L. Meng, H. Yasumoto, and R. Y. L. Tsai (2006)
J. Cell Sci. 119, 5124-5136
   Abstract »    Full Text »    PDF »
Nucleostemin Delays Cellular Senescence and Negatively Regulates TRF1 Protein Stability.
Q. Zhu, H. Yasumoto, and R. Y. L. Tsai (2006)
Mol. Cell. Biol. 26, 9279-9290
   Abstract »    Full Text »    PDF »
Evolutionarily Conserved Role of Nucleostemin: Controlling Proliferation of Stem/Progenitor Cells during Early Vertebrate Development.
C. Beekman, M. Nichane, S. De Clercq, M. Maetens, T. Floss, W. Wurst, E. Bellefroid, and J.-C. Marine (2006)
Mol. Cell. Biol. 26, 9291-9301
   Abstract »    Full Text »    PDF »
Insights into Nuclear Organization in Plants as Revealed by the Dynamic Distribution of Arabidopsis SR Splicing Factors.
V. Tillemans, I. Leponce, G. Rausin, L. Dispa, and P. Motte (2006)
PLANT CELL 18, 3218-3234
   Abstract »    Full Text »    PDF »
The NUG1 GTPase Reveals an N-terminal RNA-binding Domain That Is Essential for Association with 60 S Pre-ribosomal Particles.
J. Bassler, M. Kallas, and E. Hurt (2006)
J. Biol. Chem. 281, 24737-24744
   Abstract »    Full Text »    PDF »
Condensin I recruitment and uneven chromatin condensation precede mitotic cell death in response to DNA damage.
M. Blank, Y. Lerenthal, L. Mittelman, and Y. Shiloh (2006)
J. Cell Biol. 174, 195-206
   Abstract »    Full Text »    PDF »
The Homologous Putative GTPases Grn1p from Fission Yeast and the Human GNL3L Are Required for Growth and Play a Role in Processing of Nucleolar Pre-rRNA.
X. Du, M. R.K. S. Rao, X. Q. Chen, W. Wu, S. Mahalingam, and D. Balasundaram (2006)
Mol. Biol. Cell 17, 460-474
   Abstract »    Full Text »    PDF »
Subcellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein.
J. You, B. K. Dove, L. Enjuanes, M. L. DeDiego, E. Alvarez, G. Howell, P. Heinen, M. Zambon, and J. A. Hiscox (2005)
J. Gen. Virol. 86, 3303-3310
   Abstract »    Full Text »    PDF »
Regulation of ubiquitin ligase dynamics by the nucleolus.
K. Mekhail, M. Khacho, A. Carrigan, R. R.J. Hache, L. Gunaratnam, and S. Lee (2005)
J. Cell Biol. 170, 733-744
   Abstract »    Full Text »    PDF »
A Nonribosomal Landscape in the Nucleolus Revealed by the Stem Cell Protein Nucleostemin.
J. C. R. Politz, I. Polena, I. Trask, D. P. Bazett-Jones, and T. Pederson (2005)
Mol. Biol. Cell 16, 3401-3410
   Abstract »    Full Text »    PDF »
Going in GTP cycles in the nucleolus.
T. Misteli (2005)
J. Cell Biol. 168, 177-178
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882