Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Cell Biol. 168 (4): 643-653

Copyright © 2005 by the Rockefeller University Press.


Article

Inhibition of endothelial cell migration by thrombospondin-1 type-1 repeats is mediated by ß1 integrins

Sarah M. Short1, Alexandrine Derrien1, Radha P. Narsimhan5, Jack Lawler4, Donald E. Ingber1,3, , and Bruce R. Zetter1,2

1 Vascular Biology Program, Children's Hospital
2 Department of Cell Biology, Harvard Medical School, Boston, MA 02115
3 Department of Pathology, Harvard Medical School, Boston, MA 02115
4 Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115
5 Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115

Correspondence to Bruce R. Zetter: bruce.zetter{at}childrens.harvard.edu

Abstract: The anti-angiogenic effect of thrombospondin-1 has been shown to be mediated through binding of the type-1 repeat (TSR) domain to the CD36 transmembrane receptor. We now report that the TSR domain can inhibit VEGF-induced migration in human umbilical vein endothelial cells (HUVEC), cells that lack CD36. Moreover, we identified ß1 integrins as a critical receptor in TSR-mediated inhibition of migration in HUVEC. Using pharmacological inhibitors of downstream VEGF receptor effectors, we found that phosphoinositide 3-kinase (PI3k) was essential for TSR-mediated inhibition of HUVEC migration, but that neither PLC{gamma} nor Akt was necessary for this response. Furthermore, ß1 integrins were critical for TSR-mediated inhibition of microvascular endothelial cells, cells that express CD36. Together, our results indicate that ß1 integrins mediate the anti-migratory effects of TSR through a PI3k-dependent mechanism.

Abbreviations used in this paper: EBM, endothelial basal medium; HMVEC, human microvascular endothelial cells; HSA, horse serum albumin; HUVEC, human umbilical vein endothelial cells; IAP/CD47, integrin-associated protein; PI3k, phosphoinositide 3-kinase; RGD, Arg-Gly-Asp; siRNA, small interfering RNA; TSP1, thrombospondin-1; TSR, type-1 repeat.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Thrombospondin-1 Induction in the Diabetic Myocardium Stabilizes the Cardiac Matrix in Addition to Promoting Vascular Rarefaction Through Angiopoietin-2 Upregulation.
C. Gonzalez-Quesada, M. Cavalera, A. Biernacka, P. Kong, D.-W. Lee, A. Saxena, O. Frunza, M. Dobaczewski, A. Shinde, and N. G. Frangogiannis (2013)
Circ. Res. 113, 1331-1344
   Abstract »    Full Text »    PDF »
Molecular Basis of Antiangiogenic Thrombospondin-1 Type 1 Repeat Domain Interactions With CD36.
P. A. Klenotic, R. C. Page, W. Li, J. Amick, S. Misra, and R. L. Silverstein (2013)
Arterioscler Thromb Vasc Biol 33, 1655-1662
   Abstract »    Full Text »    PDF »
Suppression of heat shock protein 27 induces long-term dormancy in human breast cancer.
O. Straume, T. Shimamura, M. J. G. Lampa, J. Carretero, A. M. Oyan, D. Jia, C. L. Borgman, M. Soucheray, S. R. Downing, S. M. Short, et al. (2012)
PNAS 109, 8699-8704
   Abstract »    Full Text »    PDF »
Molecular Basis for the Regulation of Angiogenesis by Thrombospondin-1 and -2.
P. R. Lawler and J. Lawler (2012)
Cold Spring Harb Perspect Med 2, a006627
   Abstract »    Full Text »    PDF »
Matricellular Proteins in Cardiac Adaptation and Disease.
N. G. Frangogiannis (2012)
Physiol Rev 92, 635-688
   Abstract »    Full Text »    PDF »
Loss-of-function thrombospondin-1 mutations in familial pulmonary hypertension.
J. P. Maloney, R. S. Stearman, T. M. Bull, D. W. Calabrese, M. L. Tripp-Addison, M. J. Wick, U. Broeckel, I. M. Robbins, L. A. Wheeler, J. D. Cogan, et al. (2012)
Am J Physiol Lung Cell Mol Physiol 302, L541-L554
   Abstract »    Full Text »    PDF »
p53-Responsive miR-194 Inhibits Thrombospondin-1 and Promotes Angiogenesis in Colon Cancers.
P. Sundaram, S. Hultine, L. M. Smith, M. Dews, J. L. Fox, D. Biyashev, J. M. Schelter, Q. Huang, M. A. Cleary, O. V. Volpert, et al. (2011)
Cancer Res. 71, 7490-7501
   Abstract »    Full Text »    PDF »
Priming of the vascular endothelial growth factor signaling pathway by thrombospondin-1, CD36, and spleen tyrosine kinase.
S. Kazerounian, M. Duquette, M. A. Reyes, J. T. Lawler, K. Song, C. Perruzzi, L. Primo, R. Khosravi-Far, F. Bussolino, I. Rabinovitz, et al. (2011)
Blood 117, 4658-4666
   Abstract »    Full Text »    PDF »
Thrombospondin-1 Is a Plasmatic Marker of Peripheral Arterial Disease That Modulates Endothelial Progenitor Cell Angiogenic Properties.
D. M. Smadja, C. d'Audigier, I. Bieche, S. Evrard, L. Mauge, J.-V. Dias, J. Labreuche, I. Laurendeau, B. Marsac, B. Dizier, et al. (2011)
Arterioscler Thromb Vasc Biol 31, 551-559
   Abstract »    Full Text »    PDF »
Thrombospondin-1 Inhibits VEGF Receptor-2 Signaling by Disrupting Its Association with CD47.
S. Kaur, G. Martin-Manso, M. L. Pendrak, S. H. Garfield, J. S. Isenberg, and D. D. Roberts (2010)
J. Biol. Chem. 285, 38923-38932
   Abstract »    Full Text »    PDF »
Microfibrils and fibrillin-1 induce integrin-mediated signaling, proliferation and migration in human endothelial cells.
B. Mariko, Z. Ghandour, S. Raveaud, M. Quentin, Y. Usson, J. Verdetti, P. Huber, C. Kielty, and G. Faury (2010)
Am J Physiol Cell Physiol 299, C977-C987
   Abstract »    Full Text »    PDF »
Platelet-derived thrombospondin-1 is a critical negative regulator and potential biomarker of angiogenesis.
A. Zaslavsky, K.-H. Baek, R. C. Lynch, S. Short, J. Grillo, J. Folkman, J. E. Italiano Jr, and S. Ryeom (2010)
Blood 115, 4605-4613
   Abstract »    Full Text »    PDF »
Thrombospondin-1 modulates vascular endothelial growth factor activity at the receptor level.
X. Zhang, S. Kazerounian, M. Duquette, C. Perruzzi, J. A. Nagy, H. F. Dvorak, S. Parangi, and J. Lawler (2009)
FASEB J 23, 3368-3376
   Abstract »    Full Text »    PDF »
Selective Activity Against Proliferating Tumor Endothelial Cells by CVX-22, A Thrombospondin-1 Mimetic CovX-BodyTM.
J. CORONELLA, L. LI, K. JOHNSON, S. PIRIE-SHEPHERD, G. ROXAS, and N. LEVIN (2009)
Anticancer Res 29, 2243-2252
   Abstract »    Full Text »    PDF »
Thrombospondin-1 modulates VEGF-A-mediated Akt signaling and capillary survival in the developing retina.
J. Sun, B. D. Hopkins, K. Tsujikawa, C. Perruzzi, I. Adini, R. Swerlick, P. Bornstein, J. Lawler, and L. E. Benjamin (2009)
Am J Physiol Heart Circ Physiol 296, H1344-H1351
   Abstract »    Full Text »    PDF »
Transcriptional Switch of Dormant Tumors to Fast-Growing Angiogenic Phenotype.
N. Almog, L. Ma, R. Raychowdhury, C. Schwager, R. Erber, S. Short, L. Hlatky, P. Vajkoczy, P. E. Huber, J. Folkman, et al. (2009)
Cancer Res. 69, 836-844
   Abstract »    Full Text »    PDF »
Counterbalancing Forces: What Is Thrombospondin-1 Doing in Atherosclerotic Lesions?.
O. I. Stenina and E. F. Plow (2008)
Circ. Res. 103, 1053-1055
   Full Text »    PDF »
Antimigratory effect of TK1-2 is mediated in part by interfering with integrin {alpha}2{beta}1.
H.-K. Kim, D.-S. Oh, S.-B. Lee, J.-M. Ha, and Y. A. Joe (2008)
Mol. Cancer Ther. 7, 2133-2141
   Abstract »    Full Text »    PDF »
Neoadjuvant Treatment of Colorectal Cancer with Bevacizumab: The Perioperative Angiogenic Balance Is Sensitive to Systemic Thrombospondin-1 Levels.
C. Brostjan, K. Gebhardt, B. Gruenberger, V. Steinrueck, H. Zommer, H. Freudenthaler, S. Roka, and T. Gruenberger (2008)
Clin. Cancer Res. 14, 2065-2074
   Abstract »    Full Text »    PDF »
Dendritic cells support angiogenesis and promote lesion growth in a murine model of endometriosis.
O. Fainaru, A. Adini, O. Benny, I. Adini, S. Short, L. Bazinet, K. Nakai, E. Pravda, M. D. Hornstein, R. J. D'Amato, et al. (2008)
FASEB J 22, 522-529
   Abstract »    Full Text »    PDF »
Thrombospondins Use the VLDL Receptor and a Nonapoptotic Pathway to Inhibit Cell Division in Microvascular Endothelial Cells.
A. Oganesian, L. C. Armstrong, M. M. Migliorini, D. K. Strickland, and P. Bornstein (2008)
Mol. Biol. Cell 19, 563-571
   Abstract »    Full Text »    PDF »
HIV Protease Inhibitors Enhance the Efficacy of Irradiation.
K. C. Cuneo, T. Tu, L. Geng, A. Fu, D. E. Hallahan, and C. D. Willey (2007)
Cancer Res. 67, 4886-4893
   Abstract »    Full Text »    PDF »
Targeting CD47: NO Limit on Therapeutic Potential.
D. J. Kaczorowski and T. R. Billiar (2007)
Circ. Res. 100, 602-603
   Full Text »    PDF »
CD47 Is Necessary for Inhibition of Nitric Oxide-stimulated Vascular Cell Responses by Thrombospondin-1.
J. S. Isenberg, L. A. Ridnour, J. Dimitry, W. A. Frazier, D. A. Wink, and D. D. Roberts (2006)
J. Biol. Chem. 281, 26069-26080
   Abstract »    Full Text »    PDF »
A 27-Amino-Acid Synthetic Peptide Corresponding to the NH2-Terminal Zinc-Binding Domain of Endostatin Is Responsible for Its Antitumor Activity.
R. M. Tjin Tham Sjin, R. Satchi-Fainaro, A. E. Birsner, V.M. S. Ramanujam, J. Folkman, and K. Javaherian (2005)
Cancer Res. 65, 3656-3663
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882