Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Cell Biol. 168 (5): 775-787

Copyright © 2005 by the Rockefeller University Press.


Article

Sunday Driver links axonal transport to damage signaling

Valeria Cavalli1, Pekka Kujala2, Judith Klumperman2, , and Lawrence S.B. Goldstein1

1 Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093
2 Department of Cell Biology, Universitair Medisch Centrum Utrecht, 3584CX Utrecht, Netherlands

Correspondence to L.S.B. Goldstein: lgoldstein{at}ucsd.edu

Abstract: Neurons transmit long-range biochemical signals between cell bodies and distant axonal sites or termini. To test the hypothesis that signaling molecules are hitchhikers on axonal vesicles, we focused on the c-Jun NH2-terminal kinase (JNK) scaffolding protein Sunday Driver (syd), which has been proposed to link the molecular motor protein kinesin-1 to axonal vesicles. We found that syd and JNK3 are present on vesicular structures in axons, are transported in both the anterograde and retrograde axonal transport pathways, and interact with kinesin-I and the dynactin complex. Nerve injury induces local activation of JNK, primarily within axons, and activated JNK and syd are then transported primarily retrogradely. In axons, syd and activated JNK colocalize with p150Glued, a subunit of the dynactin complex, and with dynein. Finally, we found that injury induces an enhanced interaction between syd and dynactin. Thus, a mobile axonal JNK–syd complex may generate a transport-dependent axonal damage surveillance system.

P. Kujala's present address is the Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands.

Abbreviations used in this paper: APP, amyloid precursor protein; DHC, dynein heavy chain; DIC, dynein intermediate chain; DRG, dorsal root ganglia; JIP, JNK interacting protein; JNK, c-Jun NH2-terminal kinase; KLC, kinesin light chain; PNS, postnuclear supernatant; syd, Sunday Driver.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Cell intrinsic control of axon regeneration.
F. M. Mar, A. Bonni, and M. M. Sousa (2014)
EMBO Rep. 15, 254-263
   Abstract »    Full Text »    PDF »
Dual leucine zipper kinase is required for excitotoxicity-induced neuronal degeneration.
C. D. Pozniak, A. Sengupta Ghosh, A. Gogineni, J. E. Hanson, S.-H. Lee, J. L. Larson, H. Solanoy, D. Bustos, H. Li, H. Ngu, et al. (2013)
J. Exp. Med. 210, 2553-2567
   Abstract »    Full Text »    PDF »
Motor Domain Phosphorylation Modulates Kinesin-1 Transport.
H. A. DeBerg, B. H. Blehm, J. Sheung, A. R. Thompson, C. S. Bookwalter, S. F. Torabi, T. A. Schroer, C. L. Berger, Y. Lu, K. M. Trybus, et al. (2013)
J. Biol. Chem. 288, 32612-32621
   Abstract »    Full Text »    PDF »
Presenilin controls kinesin-1 and dynein function during APP-vesicle transport in vivo.
S. Gunawardena, G. Yang, and L. S. B. Goldstein (2013)
Hum. Mol. Genet. 22, 3828-3843
   Abstract »    Full Text »    PDF »
JNK-mediated phosphorylation of DLK suppresses its ubiquitination to promote neuronal apoptosis.
S. Huntwork-Rodriguez, B. Wang, T. Watkins, A. S. Ghosh, C. D. Pozniak, D. Bustos, K. Newton, D. S. Kirkpatrick, and J. W. Lewcock (2013)
J. Cell Biol. 202, 747-763
   Abstract »    Full Text »    PDF »
JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors.
M.-m. Fu and E. L. F. Holzbaur (2013)
J. Cell Biol. 202, 495-508
   Abstract »    Full Text »    PDF »
Independent Pathways Downstream of the Wnd/DLK MAPKKK Regulate Synaptic Structure, Axonal Transport, and Injury Signaling.
S. Klinedinst, X. Wang, X. Xiong, J. M. Haenfler, and C. A. Collins (2013)
J. Neurosci. 33, 12764-12778
   Abstract »    Full Text »    PDF »
The DLK signalling pathway--a double-edged sword in neural development and regeneration.
A. Tedeschi and F. Bradke (2013)
EMBO Rep. 14, 605-614
   Abstract »    Full Text »    PDF »
c-Jun NH2-terminal Kinase (JNK)-interacting Protein-3 (JIP3) Regulates Neuronal Axon Elongation in a Kinesin- and JNK-dependent Manner.
T. Sun, N. Yu, L.-K. Zhai, N. Li, C. Zhang, L. Zhou, Z. Huang, X.-Y. Jiang, Y. Shen, and Z.-Y. Chen (2013)
J. Biol. Chem. 288, 14531-14543
   Abstract »    Full Text »    PDF »
UNC-16/JIP3/Sunday Driver: A New Cop on the Organelle Highway.
Q. Zheng and M. L. Nonet (2013)
Genetics 194, 35-37
   Full Text »    PDF »
DLK initiates a transcriptional program that couples apoptotic and regenerative responses to axonal injury.
T. A. Watkins, B. Wang, S. Huntwork-Rodriguez, J. Yang, Z. Jiang, J. Eastham-Anderson, Z. Modrusan, J. S. Kaminker, M. Tessier-Lavigne, and J. W. Lewcock (2013)
PNAS 110, 4039-4044
   Abstract »    Full Text »    PDF »
Extrinsic and intrinsic determinants of nerve regeneration.
T. A. Ferguson and Y.-J. Son (2011)
Journal of Tissue Engineering 2, 2041731411418392
   Abstract »    Full Text »    PDF »
DLK induces developmental neuronal degeneration via selective regulation of proapoptotic JNK activity.
A. Sengupta Ghosh, B. Wang, C. D. Pozniak, M. Chen, R. J. Watts, and J. W. Lewcock (2011)
J. Cell Biol. 194, 751-764
   Abstract »    Full Text »    PDF »
JIP3 Mediates TrkB Axonal Anterograde Transport and Enhances BDNF Signaling by Directly Bridging TrkB with Kinesin-1.
S.-H. Huang, S. Duan, T. Sun, J. Wang, L. Zhao, Z. Geng, J. Yan, H.-J. Sun, and Z.-Y. Chen (2011)
J. Neurosci. 31, 10602-10614
   Abstract »    Full Text »    PDF »
The Caenorhabditis elegans JIP3 Protein UNC-16 Functions As an Adaptor to Link Kinesin-1 with Cytoplasmic Dynein.
M. Arimoto, S. P. Koushika, B. C. Choudhary, C. Li, K. Matsumoto, and N. Hisamoto (2011)
J. Neurosci. 31, 2216-2224
   Abstract »    Full Text »    PDF »
Kinesin-1 transport reductions enhance human tau hyperphosphorylation, aggregation and neurodegeneration in animal models of tauopathies.
T. L. Falzone, S. Gunawardena, D. McCleary, G. F. Reis, and L. S. B. Goldstein (2010)
Hum. Mol. Genet. 19, 4399-4408
   Abstract »    Full Text »    PDF »
Targeting NMNAT1 to Axons and Synapses Transforms Its Neuroprotective Potency In Vivo.
E. Babetto, B. Beirowski, L. Janeckova, R. Brown, J. Gilley, D. Thomson, R. R. Ribchester, and M. P. Coleman (2010)
J. Neurosci. 30, 13291-13304
   Abstract »    Full Text »    PDF »
Protein turnover of the Wallenda/DLK kinase regulates a retrograde response to axonal injury.
X. Xiong, X. Wang, R. Ewanek, P. Bhat, A. DiAntonio, and C. A. Collins (2010)
J. Cell Biol. 191, 211-223
   Abstract »    Full Text »    PDF »
Mammalian Target of Rapamycin (mTOR) Activation Increases Axonal Growth Capacity of Injured Peripheral Nerves.
N. Abe, S. H. Borson, M. J. Gambello, F. Wang, and V. Cavalli (2010)
J. Biol. Chem. 285, 28034-28043
   Abstract »    Full Text »    PDF »
Signaling to Transcription Networks in the Neuronal Retrograde Injury Response.
I. Michaelevski, Y. Segal-Ruder, M. Rozenbaum, K. F. Medzihradszky, O. Shalem, G. Coppola, S. Horn-Saban, K. Ben-Yaakov, S. Y. Dagan, I. Rishal, et al. (2010)
Science Signaling 3, ra53
   Abstract »    Full Text »    PDF »
Distinct Roles of c-Jun N-Terminal Kinase Isoforms in Neurite Initiation and Elongation during Axonal Regeneration.
M. Barnat, H. Enslen, F. Propst, R. J. Davis, S. Soares, and F. Nothias (2010)
J. Neurosci. 30, 7804-7816
   Abstract »    Full Text »    PDF »
Conserved 3'-Untranslated Region Sequences Direct Subcellular Localization of Chaperone Protein mRNAs in Neurons.
D. Vuppalanchi, J. Coleman, S. Yoo, T. T. Merianda, A. G. Yadhati, J. Hossain, A. Blesch, D. E. Willis, and J. L. Twiss (2010)
J. Biol. Chem. 285, 18025-18038
   Abstract »    Full Text »    PDF »
Axonal Transport Proteomics Reveals Mobilization of Translation Machinery to the Lesion Site in Injured Sciatic Nerve.
I. Michaelevski, K. F. Medzihradszky, A. Lynn, A. L. Burlingame, and M. Fainzilber (2010)
Mol. Cell. Proteomics 9, 976-987
   Abstract »    Full Text »    PDF »
Neuroproteomics Approaches to Decipher Neuronal Regeneration and Degeneration.
F. Sun and V. Cavalli (2010)
Mol. Cell. Proteomics 9, 963-975
   Abstract »    Full Text »    PDF »
Podocyte Injury Induces Nuclear Translocation of WTIP via Microtubule-dependent Transport.
J. H. Kim, M. Konieczkowski, A. Mukherjee, S. Schechtman, S. Khan, J. R. Schelling, M. D. Ross, L. A. Bruggeman, and J. R. Sedor (2010)
J. Biol. Chem. 285, 9995-10004
   Abstract »    Full Text »    PDF »
Sunday Driver Interacts with Two Distinct Classes of Axonal Organelles.
N. Abe, A. Almenar-Queralt, C. Lillo, Z. Shen, J. Lozach, S. P. Briggs, D. S. Williams, L. S. B. Goldstein, and V. Cavalli (2009)
J. Biol. Chem. 284, 34628-34639
   Abstract »    Full Text »    PDF »
The structural basis of Arf effector specificity: the crystal structure of ARF6 in a complex with JIP4.
T. Isabet, G. Montagnac, K. Regazzoni, B. Raynal, F. E. Khadali, P. England, M. Franco, P. Chavrier, A. Houdusse, and J. Menetrey (2009)
EMBO J. 28, 2835-2845
   Abstract »    Full Text »    PDF »
A Switch in Retrograde Signaling from Survival to Stress in Rapid-Onset Neurodegeneration.
E. Perlson, G.-B. Jeong, J. L. Ross, R. Dixit, K. E. Wallace, R. G. Kalb, and E. L. F. Holzbaur (2009)
J. Neurosci. 29, 9903-9917
   Abstract »    Full Text »    PDF »
Axonal Stress Kinase Activation and Tau Misbehavior Induced by Kinesin-1 Transport Defects.
T. L. Falzone, G. B. Stokin, C. Lillo, E. M. Rodrigues, E. L. Westerman, D. S. Williams, and L. S. B. Goldstein (2009)
J. Neurosci. 29, 5758-5767
   Abstract »    Full Text »    PDF »
Non-Nuclear WldS Determines Its Neuroprotective Efficacy for Axons and Synapses In Vivo.
B. Beirowski, E. Babetto, J. Gilley, F. Mazzola, L. Conforti, L. Janeckova, G. Magni, R. R. Ribchester, and M. P. Coleman (2009)
J. Neurosci. 29, 653-668
   Abstract »    Full Text »    PDF »
Amyloid precursor protein-induced axonopathies are independent of amyloid-{beta} peptides.
G. B. Stokin, A. Almenar-Queralt, S. Gunawardena, E. M. Rodrigues, T. Falzone, J. Kim, C. Lillo, S. L. Mount, E. A. Roberts, E. McGowan, et al. (2008)
Hum. Mol. Genet. 17, 3474-3486
   Abstract »    Full Text »    PDF »
Mutation of ERBB2 Provides a Novel Alternative Mechanism for the Ubiquitous Activation of RAS-MAPK in Ovarian Serous Low Malignant Potential Tumors.
M. S. Anglesio, J. M. Arnold, J. George, A. V. Tinker, R. Tothill, N. Waddell, L. Simms, B. Locandro, S. Fereday, N. Traficante, et al. (2008)
Mol. Cancer Res. 6, 1678-1690
   Abstract »    Full Text »    PDF »
A novel mouse model with impaired dynein/dynactin function develops amyotrophic lateral sclerosis (ALS)-like features in motor neurons and improves lifespan in SOD1-ALS mice.
E. Teuling, V. van Dis, P. S. Wulf, E. D. Haasdijk, A. Akhmanova, C. C. Hoogenraad, and D. Jaarsma (2008)
Hum. Mol. Genet. 17, 2849-2862
   Abstract »    Full Text »    PDF »
Changes in Gene Expression in Experimental Glaucoma and Optic Nerve Transection: The Equilibrium between Protective and Detrimental Mechanisms.
Z. Yang, H. A. Quigley, M. E. Pease, Y. Yang, J. Qian, D. Valenta, and D. J. Zack (2007)
Invest. Ophthalmol. Vis. Sci. 48, 5539-5548
   Abstract »    Full Text »    PDF »
Opposite Regulation of Oligodendrocyte Apoptosis by JNK3 and Pin1 after Spinal Cord Injury.
Q. M. Li, C. Tep, T. Y. Yune, X. Z. Zhou, T. Uchida, K. P. Lu, and S. O. Yoon (2007)
J. Neurosci. 27, 8395-8404
   Abstract »    Full Text »    PDF »
TrkA Receptor Activation by Nerve Growth Factor Induces Shedding of the p75 Neurotrophin Receptor Followed by Endosomal {gamma}-Secretase-mediated Release of the p75 Intracellular Domain.
S. Urra, C. A. Escudero, P. Ramos, F. Lisbona, E. Allende, P. Covarrubias, J. I. Parraguez, N. Zampieri, M. V. Chao, W. Annaert, et al. (2007)
J. Biol. Chem. 282, 7606-7615
   Abstract »    Full Text »    PDF »
Retrolinkin, a membrane protein, plays an important role in retrograde axonal transport.
J.-J. Liu, J. Ding, C. Wu, P. Bhagavatula, B. Cui, S. Chu, W. C. Mobley, and Y. Yang (2007)
PNAS 104, 2223-2228
   Abstract »    Full Text »    PDF »
Kidins220/ARMS Is Transported by a Kinesin-1-based Mechanism Likely to be Involved in Neuronal Differentiation.
A. Bracale, F. Cesca, V. E. Neubrand, T. P. Newsome, M. Way, and G. Schiavo (2007)
Mol. Biol. Cell 18, 142-152
   Abstract »    Full Text »    PDF »
Unloading kinesin transported cargoes from the tubulin track via the inflammatory c-Jun N-terminal kinase pathway.
M. Stagi, P. Gorlovoy, S. Larionov, K. Takahashi, and H. Neumann (2006)
FASEB J 20, 2573-2575
   Abstract »    Full Text »    PDF »
Towards an understanding of kinesin-1 dependent transport pathways through the study of protein-protein interactions.
J. G. Gindhart (2006)
Briefings in Functional Genomics 5, 74-86
   Abstract »    Full Text »    PDF »
A Role for Kif17 in Transport of Kv4.2.
P.-J. Chu, J. F. Rivera, and D. B. Arnold (2006)
J. Biol. Chem. 281, 365-373
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882