Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Cell Biol. 168 (6): 955-964

Copyright © 2005 by the Rockefeller University Press.


Article

Raf-1 regulates Rho signaling and cell migration

Karin Ehrenreiter1, Daniela Piazzolla1, Vanishree Velamoor1, Izabela Sobczak1, J. Victor Small2, Junji Takeda3,4, Thomas Leung5, , and Manuela Baccarini1

1 Department of Microbiology and Genetics, Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, 1030 Vienna, Austria
2 Institute of Molecular Biotechnology IMBA, Vienna Biocenter, A-1030 Vienna, Austria
3 Department of Social and Environmental Medicine, Graduate School of Medicine
4 Center for Advanced Science and Innovation, Osaka University, Osaka 565-0871, Japan
5 Institute of Molecular and Cell Biology, Singapore 138673, Singapore

Correspondence to Manuela Baccarini: manuela.baccarini{at}univie.ac.at

Abstract: Raf kinases relay signals inducing proliferation, differentiation, and survival. The Raf-1 isoform has been extensively studied as the upstream kinase linking Ras activation to the MEK/ERK module. Recently, however, genetic experiments have shown that Raf-1 plays an essential role in counteracting apoptosis, and that it does so independently of its ability to activate MEK. By conditional gene ablation, we now show that Raf-1 is required for normal wound healing in vivo and for the migration of keratinocytes and fibroblasts in vitro. Raf-1–deficient cells show a symmetric, contracted appearance, characterized by cortical actin bundles and by a disordered vimentin cytoskeleton. These defects are due to the hyperactivity and incorrect localization of the Rho-effector Rok-{alpha} to the plasma membrane. Raf-1 physically associates with Rok-{alpha} in wild-type (WT) cells, and reintroduction of either WT or kinase-dead Raf-1 in knockout fibroblasts rescues their defects in shape and migration. Thus, Raf-1 plays an essential, kinase-independent function as a spatial regulator of Rho downstream signaling during migration.

K. Ehrenreiter, D. Piazzolla, and V. Velamoor contributed equally to this paper.

V. Velamoor's present address is Cold Spring Harbor Labs, Cold Spring Harbor, NY 11724.

Abbreviations used in this paper: KC, kinase-competent; KD, kinase-dead; KGM, keratinocyte growth medium; KO, knockout; MYPT1, regulatory subunit of the myosin light chain phosphatase; WT, wild-type.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Skin Tumorigenesis Stimulated by Raf Inhibitors Relies Upon Raf Functions That Are Dependent and Independent of ERK.
E. Doma, C. Rupp, A. Varga, F. Kern, B. Riegler, and M. Baccarini (2013)
Cancer Res. 73, 6926-6937
   Abstract »    Full Text »    PDF »
Phosphorylation and mRNA Splicing of Collapsin Response Mediator Protein-2 Determine Inhibition of Rho-associated Protein Kinase (ROCK) II Function in Carcinoma Cell Migration and Invasion.
M. Morgan-Fisher, J. R. Couchman, and A. Yoneda (2013)
J. Biol. Chem. 288, 31229-31240
   Abstract »    Full Text »    PDF »
Trop2 regulates motility and lamellipodia formation in cultured fetal lung fibroblasts.
A. R. A. McDougall, S. B. Hooper, V. A. Zahra, T. J. Cole, C. Y. Lo, T. Doran, and M. J. Wallace (2013)
Am J Physiol Lung Cell Mol Physiol 305, L508-L521
   Abstract »    Full Text »    PDF »
Regulation of ROCK Activity in Cancer.
M. Morgan-Fisher, U. M. Wewer, and A. Yoneda (2013)
Journal of Histochemistry & Cytochemistry 61, 185-198
   Abstract »    Full Text »    PDF »
Focal adhesion disassembly is regulated by a RIAM to MEK-1 pathway.
G. P. Colo, P. Hernandez-Varas, J. Lock, R. A. Bartolome, N. Arellano-Sanchez, S. Stromblad, and J. Teixido (2012)
J. Cell Sci. 125, 5338-5352
   Abstract »    Full Text »    PDF »
P2Y2 receptor inhibits EGF-induced MAPK pathway to stabilise keratinocyte hemidesmosomes.
E. Faure, F. Garrouste, F. Parat, S. Monferran, L. Leloup, G. Pommier, H. Kovacic, and M. Lehmann (2012)
J. Cell Sci. 125, 4264-4277
   Abstract »    Full Text »    PDF »
The Tumor Suppressor DiRas3 Forms a Complex with H-Ras and C-RAF Proteins and Regulates Localization, Dimerization, and Kinase Activity of C-RAF.
A. Baljuls, M. Beck, A. Oenel, A. Robubi, R. Kroschewski, M. Hekman, T. Rudel, and U. R. Rapp (2012)
J. Biol. Chem. 287, 23128-23140
   Abstract »    Full Text »    PDF »
IAPs regulate the plasticity of cell migration by directly targeting Rac1 for degradation.
T. K. Oberoi, T. Dogan, J. C. Hocking, R.-P. Scholz, J. Mooz, C. L. Anderson, C. Karreman, D. Meyer zu Heringdorf, G. Schmidt, M. Ruonala, et al. (2012)
EMBO J. 31, 14-28
   Abstract »    Full Text »    PDF »
Pancreatic {beta}-cell Raf-1 is required for glucose tolerance, insulin secretion, and insulin 2 transcription.
E. U. Alejandro, G. E. Lim, A. E. Mehran, X. Hu, F. Taghizadeh, D. Pelipeychenko, M. Baccarini, and J. D. Johnson (2011)
FASEB J 25, 3884-3895
   Abstract »    Full Text »    PDF »
Spatial Phosphoprotein Profiling Reveals a Compartmentalized Extracellular Signal-regulated Kinase Switch Governing Neurite Growth and Retraction.
Y. Wang, F. Yang, Y. Fu, X. Huang, W. Wang, X. Jiang, M. A. Gritsenko, R. Zhao, M. E. Monore, O. C. Pertz, et al. (2011)
J. Biol. Chem. 286, 18190-18201
   Abstract »    Full Text »    PDF »
Abnormal activation of Ras/Raf/MAPK and RhoA/ROCKII signalling pathways in eutopic endometrial stromal cells of patients with endometriosis.
I. Y. Yotova, P. Quan, N. Leditznig, U. Beer, R. Wenzl, and W. Tschugguel (2011)
Hum. Reprod. 26, 885-897
   Abstract »    Full Text »    PDF »
Raf Family Kinases: Old Dogs Have Learned New Tricks.
D. Matallanas, M. Birtwistle, D. Romano, A. Zebisch, J. Rauch, A. von Kriegsheim, and W. Kolch (2011)
Genes & Cancer 2, 232-260
   Abstract »    Full Text »    PDF »
An association between NUAK2 and MRIP reveals a novel mechanism for regulation of actin stress fibers.
T. Vallenius, K. Vaahtomeri, B. Kovac, A.-M. Osiceanu, M. Viljanen, and T. P. Makela (2011)
J. Cell Sci. 124, 384-393
   Abstract »    Full Text »    PDF »
BRAF Inactivation Drives Aneuploidy by Deregulating CRAF.
T. Kamata, J. Hussain, S. Giblett, R. Hayward, R. Marais, and C. Pritchard (2010)
Cancer Res. 70, 8475-8486
   Abstract »    Full Text »    PDF »
Keratinocyte-Specific Stat3 Heterozygosity Impairs Development of Skin Tumors in Human Papillomavirus 8 Transgenic Mice.
M. De Andrea, M. Ritta, M. M. Landini, C. Borgogna, M. Mondini, F. Kern, K. Ehrenreiter, M. Baccarini, G. P. Marcuzzi, S. Smola, et al. (2010)
Cancer Res. 70, 7938-7948
   Abstract »    Full Text »    PDF »
Targets of Raf in tumorigenesis.
T. S. Niault and M. Baccarini (2010)
Carcinogenesis 31, 1165-1174
   Abstract »    Full Text »    PDF »
From autoinhibition to inhibition in trans: the Raf-1 regulatory domain inhibits Rok-{alpha} kinase activity.
T. Niault, I. Sobczak, K. Meissl, G. Weitsman, D. Piazzolla, G. Maurer, F. Kern, K. Ehrenreiter, M. Hamerl, I. Moarefi, et al. (2009)
J. Cell Biol. 187, 335-342
   Abstract »    Full Text »    PDF »
BLNK Binds Active H-Ras to Promote B Cell Receptor-mediated Capping and ERK Activation.
Y. Imamura, A. Oda, T. Katahira, K. Bundo, K. A. Pike, M. J. H. Ratcliffe, and D. Kitamura (2009)
J. Biol. Chem. 284, 9804-9813
   Abstract »    Full Text »    PDF »
An essential role for p120-catenin in Src- and Rac1-mediated anchorage-independent cell growth.
M. R. Dohn, M. V. Brown, and A. B. Reynolds (2009)
J. Cell Biol. 184, 437-450
   Abstract »    Full Text »    PDF »
BAG1 promotes axonal outgrowth and regeneration in vivo via Raf-1 and reduction of ROCK activity.
V. Planchamp, C. Bermel, L. Tonges, T. Ostendorf, S. Kugler, J. C. Reed, P. Kermer, M. Bahr, and P. Lingor (2008)
Brain 131, 2606-2619
   Abstract »    Full Text »    PDF »
Fibronectin-Tissue Transglutaminase Matrix Rescues RGD-impaired Cell Adhesion through Syndecan-4 and {beta}1 Integrin Co-signaling.
D. Telci, Z. Wang, X. Li, E. A. M. Verderio, M. J. Humphries, M. Baccarini, H. Basaga, and M. Griffin (2008)
J. Biol. Chem. 283, 20937-20947
   Abstract »    Full Text »    PDF »
Elevated CRAF as a Potential Mechanism of Acquired Resistance to BRAF Inhibition in Melanoma.
C. Montagut, S. V. Sharma, T. Shioda, U. McDermott, M. Ulman, L. E. Ulkus, D. Dias-Santagata, H. Stubbs, D. Y. Lee, A. Singh, et al. (2008)
Cancer Res. 68, 4853-4861
   Abstract »    Full Text »    PDF »
A Small Molecule Disruptor of Rb/Raf-1 Interaction Inhibits Cell Proliferation, Angiogenesis, and Growth of Human Tumor Xenografts in Nude Mice.
R. Kinkade, P. Dasgupta, A. Carie, D. Pernazza, M. Carless, S. Pillai, N. Lawrence, S. M. Sebti, and S. Chellappan (2008)
Cancer Res. 68, 3810-3818
   Abstract »    Full Text »    PDF »
Real-time imaging reveals that noninvasive mammary epithelial acini can contain motile cells.
G. W. Pearson and T. Hunter (2007)
J. Cell Biol. 179, 1555-1567
   Abstract »    Full Text »    PDF »
Regulation of epidermal homeostasis and repair by phosphoinositide 3-kinase.
S. Pankow, C. Bamberger, A. Klippel, and S. Werner (2006)
J. Cell Sci. 119, 4033-4046
   Abstract »    Full Text »    PDF »
A balance between Raf-1 and Fas expression sets the pace of erythroid differentiation.
C. Rubiolo, D. Piazzolla, K. Meissl, H. Beug, J. C. Huber, A. Kolbus, and M. Baccarini (2006)
Blood 108, 152-159
   Abstract »    Full Text »    PDF »
Essential role of B-Raf in ERK activation during extraembryonic development.
G. Galabova-Kovacs, D. Matzen, D. Piazzolla, K. Meissl, T. Plyushch, A. P. Chen, A. Silva, and M. Baccarini (2006)
PNAS 103, 1325-1330
   Abstract »    Full Text »    PDF »
Raf-1 sets the threshold of Fas sensitivity by modulating Rok-{alpha} signaling.
D. Piazzolla, K. Meissl, L. Kucerova, C. Rubiolo, and M. Baccarini (2005)
J. Cell Biol. 171, 1013-1022
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882