Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Cell Biol. 168 (7): 1077-1086

Copyright © 2005 by the Rockefeller University Press.


TGF-ß1 activates two distinct type I receptors in neurons

implications for neuronal NF-{kappa}B signaling

Hans-Georg König1, Donat Kögel1, Abdelhaq Rami2, , and Jochen H.M. Prehn1,3

1 Experimental Neurosurgery, Center for Neurology and Neurosurgery
2 Department of Anatomy III, Johann Wolfgang Goethe-University Clinics, D-60590 Frankfurt, Germany
3 Department of Physiology, Neuroscience Research Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland

Correspondence to Jochen H.M. Prehn: prehn{at}

Abstract: Transforming growth factor-ßs (TGF-ßs) are pleiotropic cytokines involved in development and maintenance of the nervous system. In several neural lesion paradigms, TGF-ß1 exerts potent neuroprotective effects. Neurons treated with TGF-ß1 activated the canonical TGF-ß receptor I/activin-like kinase receptor 5 (ALK5) pathway. The transcription factor nuclear factor-{kappa}B (NF-{kappa}B) plays a fundamental role in neuroprotection. Treatment with TGF-ß1 enhanced NF-{kappa}B activity in gelshift and reporter gene analyses. However, ectopic expression of a constitutively active ALK5 failed to mimic these effects. ALK1 has been described as an alternative TGF-ß receptor in endothelial cells. Interestingly, we detected significant basal expression of ALK1 and its injury-induced up-regulation in neurons. Treatment with TGF-ß1 also induced a pronounced increase in downstream Smad1 phosphorylation. Overexpression of a constitutively active ALK1 mimicked the effect of TGF-ß1 on NF-{kappa}B activation and neuroprotection. Our data suggest that TGF-ß1 simultaneously activates two distinct receptor pathways in neurons and that the ALK1 pathway mediates TGF-ß1–induced NF-{kappa}B survival signaling.

Abbreviations used in this paper: ALK5, activin-like kinase 5; BMP, bone morphogenetic protein; DIV, days in vitro; GFAP, glial acidic fibrillary protein; MCAO, middle cerebral artery occlusion; NF-{kappa}B, nuclear factor-{kappa}B; NMDA, N-methyl-D-aspartate; NO, nitric oxide; PI, propidium iodide; SNOC, S-nitroso-cysteine; TßRI, TGF-ß receptor type I; TGF-ß, transforming growth factor-ß.

TGF{beta} Signaling Induces Expression of Gadd45b in Retinal Ganglion Cells.
B. Liu, X. Sun, G. Suyeoka, J. G. N. Garcia, and Y. I. Leiderman (2013)
Invest. Ophthalmol. Vis. Sci. 54, 1061-1069
   Abstract »    Full Text »    PDF »
New findings in osteoarthritis pathogenesis: therapeutic implications.
L. Pulsatelli, O. Addimanda, V. Brusi, B. Pavloska, and R. Meliconi (2013)
Therapeutic Advances in Chronic Disease 4, 23-43
   Abstract »    PDF »
Fibroblast growth factor homologous factor 1 interacts with NEMO to regulate NF-{kappa}B signaling in neurons.
H.-G. Konig, B. J. Fenner, J. C. Byrne, R. F. Schwamborn, T. Bernas, C. A. Jefferies, and J. H. M. Prehn (2012)
J. Cell Sci. 125, 6058-6070
   Abstract »    Full Text »    PDF »
Notch and Transforming Growth Factor-{beta} (TGF{beta}) Signaling Pathways Cooperatively Regulate Vascular Smooth Muscle Cell Differentiation.
Y. Tang, S. Urs, J. Boucher, T. Bernaiche, D. Venkatesh, D. B. Spicer, C. P. H. Vary, and L. Liaw (2010)
J. Biol. Chem. 285, 17556-17563
   Abstract »    Full Text »    PDF »
Canonical TGF-{beta} Signaling Is Required for the Balance of Excitatory/Inhibitory Transmission within the Hippocampus and Prepulse Inhibition of Acoustic Startle.
M. Sun, J. C. Gewirtz, L. Bofenkamp, R. J. Wickham, H. Ge, and M. B. O'Connor (2010)
J. Neurosci. 30, 6025-6035
   Abstract »    Full Text »    PDF »
The type III transforming growth factor-{beta} receptor negatively regulates nuclear factor kappa B signaling through its interaction with {beta}-arrestin2.
H. J. You, T. How, and G. C. Blobe (2009)
Carcinogenesis 30, 1281-1287
   Abstract »    Full Text »    PDF »
Intracisternal administration of transforming growth factor- evokes fever through the induction of cyclooxygenase-2 in brain endothelial cells.
S. Matsumura, T. Shibakusa, T. Fujikawa, H. Yamada, K. Matsumura, K. Inoue, and T. Fushiki (2008)
Am J Physiol Regulatory Integrative Comp Physiol 294, R266-R275
   Abstract »    Full Text »    PDF »
Microarray Analysis of the Cellular Pathways Involved in the Adaptation to and Progression of Motor Neuron Injury in the SOD1 G93A Mouse Model of Familial ALS.
L. Ferraiuolo, P. R. Heath, H. Holden, P. Kasher, J. Kirby, and P. J. Shaw (2007)
J. Neurosci. 27, 9201-9219
   Abstract »    Full Text »    PDF »
Dose-dependent cross-talk between the transforming growth factor-{beta} and interleukin-1 signaling pathways.
T. Lu, L. Tian, Y. Han, M. Vogelbaum, and G. R. Stark (2007)
PNAS 104, 4365-4370
   Abstract »    Full Text »    PDF »
Bioluminescence imaging of Smad signaling in living mice shows correlation with excitotoxic neurodegeneration.
J. Luo, A. H. Lin, E. Masliah, and T. Wyss-Coray (2006)
PNAS 103, 18326-18331
   Abstract »    Full Text »    PDF »
Transforming growth factor-beta1 differentially mediates fibronectin and inflammatory cytokine expression in kidney tubular cells.
W. Qi, X. Chen, J. Holian, E. Mreich, S. Twigg, R. E. Gilbert, and C. A. Pollock (2006)
Am J Physiol Renal Physiol 291, F1070-F1077
   Abstract »    Full Text »    PDF »
Role of transforming growth factor-beta in hematologic malignancies.
M. Dong and G. C. Blobe (2006)
Blood 107, 4589-4596
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882