Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Cell Biol. 171 (5): 893-904

Copyright © 2005 by the Rockefeller University Press.


Article

Subcellular targeting of oxidants during endothelial cell migration

Ru Feng Wu1, You Cheng Xu1, Zhenyi Ma1, Fiemu E. Nwariaku1, George A. Sarosi, Jr.1,2, , and Lance S. Terada1,2

1 University of Texas Southwestern, Dallas, TX 75390
2 Dallas Veterans Administration Medical Center, Dallas, TX 75390

Correspondence to Lance S. Terada: Lance.Terada{at}med.va.gov

Abstract: Endogenous oxidants participate in endothelial cell migration, suggesting that the enzymatic source of oxidants, like other proteins controlling cell migration, requires precise subcellular localization for spatial confinement of signaling effects. We found that the nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase adaptor p47phox and its binding partner TRAF4 were sequestered within nascent, focal complexlike structures in the lamellae of motile endothelial cells. TRAF4 directly associated with the focal contact scaffold Hic-5, and the knockdown of either protein, disruption of the complex, or oxidant scavenging blocked cell migration. An active mutant of TRAF4 activated the NADPH oxidase downstream of the Rho GTPases and p21-activated kinase 1 (PAK1) and oxidatively modified the focal contact phosphatase PTP-PEST. The oxidase also functioned upstream of Rac1 activation, suggesting its participation in a positive feedback loop. Active TRAF4 initiated robust membrane ruffling through Rac1, PAK1, and the oxidase, whereas the knockdown of PTP-PEST increased ruffling independent of oxidase activation. Our data suggest that TRAF4 specifies a molecular address within focal complexes that is targeted for oxidative modification during cell migration.

Abbreviations used in this paper: 5'-IAF, 5'-iodoacetamidofluorescein; CRIB, Cdc42–Rac1 interaction binding; HUVEC, human umbilical vein endothelial cell; JNK, c-Jun NH2-terminal kinase; MOI, multiplicity of infection; PAK, p21-activated kinase; PID, PAK inhibitory domain; siRNA, short inhibitory RNA; TIRF, total internal reflection fluorescence.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death.
N. A. Graham, M. Tahmasian, B. Kohli, E. Komisopoulou, M. Zhu, I. Vivanco, M. A. Teitell, H. Wu, A. Ribas, R. S. Lo, et al. (2014)
Mol Syst Biol 8, 589
   Abstract »    Full Text »    PDF »
Regulation of Circadian Clocks by Redox Homeostasis.
A. Stangherlin and A. B. Reddy (2013)
J. Biol. Chem. 288, 26505-26511
   Abstract »    Full Text »    PDF »
Selective activation of oxidized PTP1B by the thioredoxin system modulates PDGF-{beta} receptor tyrosine kinase signaling.
M. Dagnell, J. Frijhoff, I. Pader, M. Augsten, B. Boivin, J. Xu, P. K. Mandal, N. K. Tonks, C. Hellberg, M. Conrad, et al. (2013)
PNAS 110, 13398-13403
   Abstract »    Full Text »    PDF »
Ubiquitination of Tumor Necrosis Factor Receptor-associated Factor 4 (TRAF4) by Smad Ubiquitination Regulatory Factor 1 (Smurf1) Regulates Motility of Breast Epithelial and Cancer Cells.
X. Wang, C. Jin, Y. Tang, L.-Y. Tang, and Y. E. Zhang (2013)
J. Biol. Chem. 288, 21784-21792
   Abstract »    Full Text »    PDF »
oiwa, a Female Gametophytic Mutant Impaired in a Mitochondrial Manganese-Superoxide Dismutase, Reveals Crucial Roles for Reactive Oxygen Species during Embryo Sac Development and Fertilization in Arabidopsis.
M. V. Martin, D. F. Fiol, V. Sundaresan, E. J. Zabaleta, and G. C. Pagnussat (2013)
PLANT CELL 25, 1573-1591
   Abstract »    Full Text »    PDF »
Acquisition of the Metastatic Phenotype Is Accompanied by H2O2-Dependent Activation of the p130Cas Signaling Complex.
N. Hempel, T. R. Bartling, B. Mian, and J. A. Melendez (2013)
Mol. Cancer Res. 11, 303-312
   Abstract »    Full Text »    PDF »
Role for Traf4 in Polarizing Adherens Junctions as a Prerequisite for Efficient Cell Shape Changes.
S. J. Mathew, M. Rembold, and M. Leptin (2011)
Mol. Cell. Biol. 31, 4978-4993
   Abstract »    Full Text »    PDF »
Regulation of protein tyrosine phosphatases by reversible oxidation.
A. Ostman, J. Frijhoff, A. Sandin, and F.-D. Bohmer (2011)
J. Biochem. 150, 345-356
   Abstract »    Full Text »    PDF »
Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases.
P. A. Swanson II, A. Kumar, S. Samarin, M. Vijay-Kumar, K. Kundu, N. Murthy, J. Hansen, A. Nusrat, and A. S. Neish (2011)
PNAS 108, 8803-8808
   Abstract »    Full Text »    PDF »
12/15-lipoxygenase-derived lipid peroxides control receptor tyrosine kinase signaling through oxidation of protein tyrosine phosphatases.
M. Conrad, A. Sandin, H. Forster, A. Seiler, J. Frijhoff, M. Dagnell, G. W. Bornkamm, O. Radmark, R. H. van Huijsduijnen, P. Aspenstrom, et al. (2010)
PNAS 107, 15774-15779
   Abstract »    Full Text »    PDF »
Nox4-Derived H2O2 Mediates Endoplasmic Reticulum Signaling through Local Ras Activation.
R.-F. Wu, Z. Ma, Z. Liu, and L. S. Terada (2010)
Mol. Cell. Biol. 30, 3553-3568
   Abstract »    Full Text »    PDF »
Regulation of Cancer Invasion by Reactive Oxygen Species and Tks Family Scaffold Proteins.
A. M. Weaver (2009)
Science Signaling 2, pe56
   Abstract »    Full Text »    PDF »
Tks5-Dependent, Nox-Mediated Generation of Reactive Oxygen Species Is Necessary for Invadopodia Formation.
B. Diaz, G. Shani, I. Pass, D. Anderson, M. Quintavalle, and S. A. Courtneidge (2009)
Science Signaling 2, ra53
   Abstract »    Full Text »    PDF »
Novel p47phox-Related Organizers Regulate Localized NADPH Oxidase 1 (Nox1) Activity.
D. Gianni, B. Diaz, N. Taulet, B. Fowler, S. A. Courtneidge, and G. M. Bokoch (2009)
Science Signaling 2, ra54
   Abstract »    Full Text »    PDF »
NADPH Oxidase 1 Controls the Persistence of Directed Cell Migration by a Rho-Dependent Switch of {alpha}2/{alpha}3 Integrins.
A. Sadok, A. Pierres, L. Dahan, C. Prevot, M. Lehmann, and H. Kovacic (2009)
Mol. Cell. Biol. 29, 3915-3928
   Abstract »    Full Text »    PDF »
Tumor Necrosis Factor-Receptor-associated Factor-4 Is a Positive Regulator of Transforming Growth Factor-{beta} Signaling That Affects Neural Crest Formation.
T. Kalkan, Y. Iwasaki, C. Y. Park, and G. H. Thomsen (2009)
Mol. Biol. Cell 20, 3436-3450
   Abstract »    Full Text »    PDF »
Looking beyond death: a morphogenetic role for the TNF signalling pathway.
S. J. Mathew, D. Haubert, M. Kronke, and M. Leptin (2009)
J. Cell Sci. 122, 1939-1946
   Abstract »    Full Text »    PDF »
Physiology of Cell Volume Regulation in Vertebrates.
E. K. Hoffmann, I. H. Lambert, and S. F. Pedersen (2009)
Physiol Rev 89, 193-277
   Abstract »    Full Text »    PDF »
What Underlies Endothelial Shear Sensing? The Matrix, of Course.
L. S. Terada (2008)
Circ. Res. 103, 562-564
   Full Text »    PDF »
HIV-1 Tat Activates Dual Nox Pathways Leading to Independent Activation of ERK and JNK MAP Kinases.
R. F. Wu, Z. Ma, D. P. Myers, and L. S. Terada (2007)
J. Biol. Chem. 282, 37412-37419
   Abstract »    Full Text »    PDF »
Manganese Superoxide Dismutase Enhances the Invasive and Migratory Activity of Tumor Cells.
K. M. Connor, N. Hempel, K. K. Nelson, G. Dabiri, A. Gamarra, J. Belarmino, L. Van De Water, B. M. Mian, and J. A. Melendez (2007)
Cancer Res. 67, 10260-10267
   Abstract »    Full Text »    PDF »
p66Shc mediates anoikis through RhoA.
Z. Ma, D. P. Myers, R. F. Wu, F. E. Nwariaku, and L. S. Terada (2007)
J. Cell Biol. 179, 23-31
   Abstract »    Full Text »    PDF »
Hic-5 promotes endothelial cell migration to lysophosphatidic acid.
C. Avraamides, M. E. Bromberg, J. P. Gaughan, S. M. Thomas, A. Y. Tsygankov, and T. S. Panetti (2007)
Am J Physiol Heart Circ Physiol 293, H193-H203
   Abstract »    Full Text »    PDF »
Airway Epithelial Cell Migration and Wound Repair by ATP-mediated Activation of Dual Oxidase 1.
U. V. Wesley, P. F. Bove, M. Hristova, S. McCarthy, and A. van der Vliet (2007)
J. Biol. Chem. 282, 3213-3220
   Abstract »    Full Text »    PDF »
ATP Activates a Reactive Oxygen Species-dependent Oxidative Stress Response and Secretion of Proinflammatory Cytokines in Macrophages.
C. M. Cruz, A. Rinna, H. J. Forman, A. L. M. Ventura, P. M. Persechini, and D. M. Ojcius (2007)
J. Biol. Chem. 282, 2871-2879
   Abstract »    Full Text »    PDF »
Specificity in reactive oxidant signaling: think globally, act locally.
L. S. Terada (2006)
J. Cell Biol. 174, 615-623
   Abstract »    Full Text »    PDF »
Localizing NADPH Oxidase-Derived ROS.
M. Ushio-Fukai (2006)
Sci. STKE 2006, re8
   Abstract »    Full Text »    PDF »
Oligomerizing Potential of a Focal Adhesion LIM Protein Hic-5 Organizing a Nuclear-Cytoplasmic Shuttling Complex.
K. Mori, M. Asakawa, M. Hayashi, M. Imura, T. Ohki, E. Hirao, J.-r. Kim-Kaneyama, K. Nose, and M. Shibanuma (2006)
J. Biol. Chem. 281, 22048-22061
   Abstract »    Full Text »    PDF »
Redox Regulatory Mechanisms in Cellular Stress Responses.
N. FEDOROFF (2006)
Ann. Bot. 98, 289-300
   Abstract »    Full Text »    PDF »
Redox signaling in angiogenesis: Role of NADPH oxidase.
M. Ushio-Fukai (2006)
Cardiovasc Res 71, 226-235
   Abstract »    Full Text »    PDF »
Role of boundary conditions in an experimental model of epithelial wound healing.
D. L. Nikolic, A. N. Boettiger, D. Bar-Sagi, J. D. Carbeck, and S. Y. Shvartsman (2006)
Am J Physiol Cell Physiol 291, C68-C75
   Abstract »    Full Text »    PDF »
Cell signaling. H2O2, a necessary evil for cell signaling..
S. G. Rhee (2006)
Science 312, 1882-1883
   Abstract »    Full Text »    PDF »
Control of Plant Development by Reactive Oxygen Species.
C. Gapper and L. Dolan (2006)
Plant Physiology 141, 341-345
   Full Text »    PDF »
Oxidative Modification of Protein Tyrosine Phosphatases.
R. F. Wu and L. S. Terada (2006)
Sci. STKE 2006, pl2
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882