Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Cell Biol. 171 (6): 1001-1012

Copyright © 2005 by the Rockefeller University Press.


Article

Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity

Ji-Yeon Shin, Zhi-Hui Fang, Zhao-Xue Yu, Chuan-En Wang, Shi-Hua Li, , and Xiao-Jiang Li

Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322

Correspondence to Xiao-Jiang Li: xiaoli{at}genetics.emory.edu

Abstract: Huntington disease (HD) is characterized by the preferential loss of striatal medium-sized spiny neurons (MSNs) in the brain. Because MSNs receive abundant glutamatergic input, their vulnerability to excitotoxicity may be largely influenced by the capacity of glial cells to remove extracellular glutamate. However, little is known about the role of glia in HD neuropathology. Here, we report that mutant huntingtin accumulates in glial nuclei in HD brains and decreases the expression of glutamate transporters. As a result, mutant huntingtin (htt) reduces glutamate uptake in cultured astrocytes and HD mouse brains. In a neuron–glia coculture system, wild-type glial cells protected neurons against mutant htt-mediated neurotoxicity, whereas glial cells expressing mutant htt increased neuronal vulnerability. Mutant htt in cultured astrocytes decreased their protection of neurons against glutamate excitotoxicity. These findings suggest that decreased glutamate uptake caused by glial mutant htt may critically contribute to neuronal excitotoxicity in HD.

Abbreviations used in this paper: AD, Alzheimer's disease; DHK, dihydrokainate; DIV, days in vitro; GFAP, glial fibrillary acidic protein; GLT-1, glutamate transporter-1; GLAST, glutamate/aspartate transporter; HD, Huntington's disease; htt, huntingtin; MAP2, microtubule-associated protein 2; MSNs, medium-sized spiny neurons; MTT, 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide; PolyQ, polyglutamine.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Caenorhabditis elegans as a model system for studying non-cell-autonomous mechanisms in protein-misfolding diseases.
C. I. Nussbaum-Krammer and R. I. Morimoto (2014)
Dis. Model. Mech. 7, 31-39
   Abstract »    Full Text »    PDF »
Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes.
M. Costanzo, S. Abounit, L. Marzo, A. Danckaert, Z. Chamoun, P. Roux, and C. Zurzolo (2013)
J. Cell Sci. 126, 3678-3685
   Abstract »    Full Text »    PDF »
Distinct roles for Toll and autophagy pathways in double-stranded RNA toxicity in a Drosophila model of expanded repeat neurodegenerative diseases.
S. E. Samaraweera, L. V. O'Keefe, G. R. Price, D. J. Venter, and R. I. Richards (2013)
Hum. Mol. Genet. 22, 2811-2819
   Abstract »    Full Text »    PDF »
A critical role of astrocyte-mediated nuclear factor-{kappa}B-dependent inflammation in Huntington's disease.
H.-Y. Hsiao, Y.-C. Chen, H.-M. Chen, P.-H. Tu, and Y. Chern (2013)
Hum. Mol. Genet. 22, 1826-1842
   Abstract »    Full Text »    PDF »
Striatal allografts in patients with Huntington's disease: impact of diminished astrocytes and vascularization on graft viability.
G. Cisbani, T. B. Freeman, D. Soulet, M. Saint-Pierre, D. Gagnon, M. Parent, R. A. Hauser, R. A. Barker, and F. Cicchetti (2013)
Brain 136, 433-443
   Abstract »    Full Text »    PDF »
Forkhead box protein p1 is a transcriptional repressor of immune signaling in the CNS: implications for transcriptional dysregulation in Huntington disease.
B. Tang, K. Becanovic, P. A. Desplats, B. Spencer, A. M. Hill, C. Connolly, E. Masliah, B. R. Leavitt, and E. A. Thomas (2012)
Hum. Mol. Genet. 21, 3097-3111
   Abstract »    Full Text »    PDF »
R6/2 Huntington's Disease Mice Develop Early and Progressive Abnormal Brain Metabolism and Seizures.
E. Cepeda-Prado, S. Popp, U. Khan, D. Stefanov, J. Rodriguez, L. B. Menalled, D. Dow-Edwards, S. A. Small, and H. Moreno (2012)
J. Neurosci. 32, 6456-6467
   Abstract »    Full Text »    PDF »
Truncated N-terminal huntingtin fragment with expanded-polyglutamine (htt552-100Q) suppresses brain-derived neurotrophic factor transcription in astrocytes.
L. Wang, F. Lin, J. Wang, J. Wu, R. Han, L. Zhu, G. Zhang, M. DiFiglia, and Z. Qin (2012)
Acta Biochim Biophys Sin 44, 249-258
   Abstract »    Full Text »    PDF »
Nuclear Factor-{kappa}B Contributes to Neuron-Dependent Induction of Glutamate Transporter-1 Expression in Astrocytes.
M. Ghosh, Y. Yang, J. D. Rothstein, and M. B. Robinson (2011)
J. Neurosci. 31, 9159-9169
   Abstract »    Full Text »    PDF »
Neuronal degeneration in striatal transplants and Huntington's disease: potential mechanisms and clinical implications.
F. Cicchetti, D. Soulet, and T. B. Freeman (2011)
Brain 134, 641-652
   Abstract »    Full Text »    PDF »
Increased energy metabolism rescues glia-induced pathology in a Drosophila model of Huntington's disease.
M.-T. Besson, P. Dupont, Y.-W. C. Fridell, and J.-C. Lievens (2010)
Hum. Mol. Genet. 19, 3372-3382
   Abstract »    Full Text »    PDF »
Altered Manganese Homeostasis and Manganese Toxicity in a Huntington's Disease Striatal Cell Model Are Not Explained by Defects in the Iron Transport System.
B. B. Williams, G. F. Kwakye, M. Wegrzynowicz, D. Li, M. Aschner, K. M. Erikson, and A. B. Bowman (2010)
Toxicol. Sci. 117, 169-179
   Abstract »    Full Text »    PDF »
In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington's disease subjects.
M. Faideau, J. Kim, K. Cormier, R. Gilmore, M. Welch, G. Auregan, N. Dufour, M. Guillermier, E. Brouillet, P. Hantraye, et al. (2010)
Hum. Mol. Genet. 19, 3053-3067
   Abstract »    Full Text »    PDF »
Suppression of the novel ER protein Maxer by mutant ataxin-1 in Bergman glia contributes to non-cell-autonomous toxicity.
H. Shiwaku, N. Yoshimura, T. Tamura, M. Sone, S. Ogishima, K. Watase, K. Tagawa, and H. Okazawa (2010)
EMBO J. 29, 2446-2460
   Abstract »    Full Text »    PDF »
Molecular Mechanisms and Potential Therapeutical Targets in Huntington's Disease.
C. Zuccato, M. Valenza, and E. Cattaneo (2010)
Physiol Rev 90, 905-981
   Abstract »    Full Text »    PDF »
Mutant Huntingtin in Glial Cells Exacerbates Neurological Symptoms of Huntington Disease Mice.
J. Bradford, J.-Y. Shin, M. Roberts, C.-E. Wang, G. Sheng, S. Li, and X.-J. Li (2010)
J. Biol. Chem. 285, 10653-10661
   Abstract »    Full Text »    PDF »
Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms.
J. Bradford, J.-Y. Shin, M. Roberts, C.-E. Wang, X.-J. Li, and S. Li (2009)
PNAS 106, 22480-22485
   Abstract »    Full Text »    PDF »
Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond.
H. Ilieva, M. Polymenidou, and D. W. Cleveland (2009)
J. Cell Biol. 187, 761-772
   Abstract »    Full Text »    PDF »
Microglial CB2 cannabinoid receptors are neuroprotective in Huntington's disease excitotoxicity.
J. Palazuelos, T. Aguado, M. R. Pazos, B. Julien, C. Carrasco, E. Resel, O. Sagredo, C. Benito, J. Romero, I. Azcoitia, et al. (2009)
Brain 132, 3152-3164
   Abstract »    Full Text »    PDF »
The organic cation transporter-3 is a pivotal modulator of neurodegeneration in the nigrostriatal dopaminergic pathway.
M. Cui, R. Aras, W. V. Christian, P. M. Rappold, M. Hatwar, J. Panza, V. Jackson-Lewis, J. A. Javitch, N. Ballatori, S. Przedborski, et al. (2009)
PNAS 106, 8043-8048
   Abstract »    Full Text »    PDF »
High efficiency adenovirus-mediated expression of truncated N-terminal huntingtin fragment (htt552) in primary rat astrocytes.
L. Wang, F. Lin, J. Wu, and Z. Qin (2009)
Acta Biochim Biophys Sin 41, 325-334
   Abstract »    Full Text »    PDF »
Dysfunctional Cell-Cell Signaling in the Neurovascular Unit as a Paradigm for Central Nervous System Disease.
S. Guo and E. H. Lo (2009)
Stroke 40, S4-S7
   Abstract »    Full Text »    PDF »
In Situ Mitochondrial Ca2+ Buffering Differences of Intact Neurons and Astrocytes from Cortex and Striatum.
J. M. A. Oliveira and J. Goncalves (2009)
J. Biol. Chem. 284, 5010-5020
   Abstract »    Full Text »    PDF »
Differential Activities of the Ubiquitin-Proteasome System in Neurons versus Glia May Account for the Preferential Accumulation of Misfolded Proteins in Neurons.
S. Tydlacka, C.-E. Wang, X. Wang, S. Li, and X.-J. Li (2008)
J. Neurosci. 28, 13285-13295
   Abstract »    Full Text »    PDF »
Suppression of neuropil aggregates and neurological symptoms by an intracellular antibody implicates the cytoplasmic toxicity of mutant huntingtin.
C.-E. Wang, H. Zhou, J. R. McGuire, V. Cerullo, B. Lee, S.-H. Li, and X.-J. Li (2008)
J. Cell Biol. 181, 803-816
   Abstract »    Full Text »    PDF »
Accumulation of N-terminal mutant huntingtin in mouse and monkey models implicated as a pathogenic mechanism in Huntington's disease.
C.-E. Wang, S. Tydlacka, A. L. Orr, S.-H. Yang, R. K. Graham, M. R. Hayden, S. Li, A. W.S. Chan, and X.-J. Li (2008)
Hum. Mol. Genet. 17, 2738-2751
   Abstract »    Full Text »    PDF »
A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease.
M. Bjorkqvist, E. J. Wild, J. Thiele, A. Silvestroni, R. Andre, N. Lahiri, E. Raibon, R. V. Lee, C. L. Benn, D. Soulet, et al. (2008)
J. Exp. Med. 205, 1869-1877
   Abstract »    Full Text »    PDF »
Expanded-Polyglutamine Huntingtin Protein Suppresses the Secretion and Production of a Chemokine (CCL5/RANTES) by Astrocytes.
S.-Y. Chou, J.-Y. Weng, H.-L. Lai, F. Liao, S. H. Sun, P.-H. Tu, D. W. Dickson, and Y. Chern (2008)
J. Neurosci. 28, 3277-3290
   Abstract »    Full Text »    PDF »
Impaired ubiquitin-proteasome system activity in the synapses of Huntington's disease mice.
J. Wang, C.-E. Wang, A. Orr, S. Tydlacka, S.-H. Li, and X.-J. Li (2008)
J. Cell Biol. 180, 1177-1189
   Abstract »    Full Text »    PDF »
Histone Deacetylase Inhibition Modulates Kynurenine Pathway Activation in Yeast, Microglia, and Mice Expressing a Mutant Huntingtin Fragment.
F. Giorgini, T. Moller, W. Kwan, D. Zwilling, J. L. Wacker, S. Hong, L.-C. L. Tsai, C. S. Cheah, R. Schwarcz, P. Guidetti, et al. (2008)
J. Biol. Chem. 283, 7390-7400
   Abstract »    Full Text »    PDF »
AKT-sensitive or insensitive pathways of toxicity in glial cells and neurons in Drosophila models of Huntington's disease.
J.-C. Lievens, M. Iche, M. Laval, C. Faivre-Sarrailh, and S. Birman (2008)
Hum. Mol. Genet. 17, 882-894
   Abstract »    Full Text »    PDF »
N-Terminal Mutant Huntingtin Associates with Mitochondria and Impairs Mitochondrial Trafficking.
A. L. Orr, S. Li, C.-E. Wang, H. Li, J. Wang, J. Rong, X. Xu, P. G. Mastroberardino, J. T. Greenamyre, and X.-J. Li (2008)
J. Neurosci. 28, 2783-2792
   Abstract »    Full Text »    PDF »
Expansions of CAG{middle dot}CTG repeats in immortalized human astrocytes.
D. A. Claassen and R. S. Lahue (2007)
Hum. Mol. Genet. 16, 3088-3096
   Abstract »    Full Text »    PDF »
Selective defect of in vivo glycolysis in early Huntington's disease striatum.
W. J. Powers, T. O. Videen, J. Markham, L. McGee-Minnich, J. V. Antenor-Dorsey, T. Hershey, and J. S. Perlmutter (2007)
PNAS 104, 2945-2949
   Abstract »    Full Text »    PDF »
The first 17 amino acids of Huntingtin modulate its sub-cellular localization, aggregation and effects on calcium homeostasis.
E. Rockabrand, N. Slepko, A. Pantalone, V. N. Nukala, A. Kazantsev, J. L. Marsh, P. G. Sullivan, J. S. Steffan, S. L. Sensi, and L. M. Thompson (2007)
Hum. Mol. Genet. 16, 61-77
   Abstract »    Full Text »    PDF »
Animal Models of Huntington's Disease.
S. Ramaswamy, J. L. McBride, and J. H. Kordower (2007)
ILAR J 48, 356-373
   Abstract »    Full Text »    PDF »
CAG{middle dot}CTG repeat instability in cultured human astrocytes.
B. T. Farrell and R. S. Lahue (2006)
Nucleic Acids Res. 34, 4495-4505
   Abstract »    Full Text »    PDF »
Regulation of intracellular trafficking of huntingtin-associated protein-1 is critical for TrkA protein levels and neurite outgrowth..
J. Rong, J. R. McGuire, Z.-H. Fang, G. Sheng, J.-Y. Shin, S.-H. Li, and X.-J. Li (2006)
J. Neurosci. 26, 6019-6030
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882