Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Cell Biol. 173 (1): 19-26

Copyright © 2006 by the Rockefeller University Press.


Report

A dynamic ubiquitin equilibrium couples proteasomal activity to chromatin remodeling

Nico P. Dantuma1, Tom A.M. Groothuis2, Florian A. Salomons1, , and Jacques Neefjes2

1 Department of Cell and Molecular Biology, The Medical Nobel Institute, Karolinska Institutet, S-171 77 Stockholm, Sweden
2 Division of Tumor Biology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, Netherlands

Correspondence to Nico P. Dantuma: nico.dantuma{at}ki.se; or Jacques Neefjes: j.neefjes{at}nki.nl

Abstract: Protein degradation, chromatin remodeling, and membrane trafficking are critically regulated by ubiquitylation. The presence of several coexisting ubiquitin-dependent processes, each of crucial importance to the cell, is remarkable. This brings up questions on how the usage of this versatile regulator is negotiated between the different cellular processes. During proteotoxic stress, the accumulation of ubiquitylated substrates coincides with the depletion of ubiquitylated histone H2A and chromatin remodeling. We show that this redistribution of ubiquitin during proteotoxic stress is a direct consequence of competition for the limited pool of free ubiquitin. Thus, the ubiquitin cycle couples various ubiquitin-dependent processes because of a rate-limiting pool of free ubiquitin. We propose that this ubiquitin equilibrium may allow cells to sense proteotoxic stress in a genome-wide fashion.

N.P. Dantuma and T.A.M. Groothius contributed equally to this paper.

Abbreviations used in this paper: GFP-Ub, GFP-ubiquitin; PAGFP, photoactivatable GFP; uH2A, ubiquitylated histone H2A.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Bortezomib inhibits STAT5-dependent degradation of LEF-1, inducing granulocytic differentiation in congenital neutropenia CD34+ cells.
K. Gupta, I. Kuznetsova, O. Klimenkova, M. Klimiankou, J. Meyer, M. A. S. Moore, C. Zeidler, K. Welte, and J. Skokowa (2014)
Blood 123, 2550-2561
   Abstract »    Full Text »    PDF »
A Small Molecule Inhibitor of Polycomb Repressive Complex 1 Inhibits Ubiquitin Signaling at DNA Double-strand Breaks.
I. H. Ismail, D. McDonald, H. Strickfaden, Z. Xu, and M. J. Hendzel (2013)
J. Biol. Chem. 288, 26944-26954
   Abstract »    Full Text »    PDF »
System-wide Analysis Reveals Intrinsically Disordered Proteins Are Prone to Ubiquitylation after Misfolding Stress.
A. H. M. Ng, N. N. Fang, S. A. Comyn, J. Gsponer, and T. Mayor (2013)
Mol. Cell. Proteomics 12, 2456-2467
   Abstract »    Full Text »    PDF »
Supervillin-mediated Suppression of p53 Protein Enhances Cell Survival.
Z. Fang and E. J. Luna (2013)
J. Biol. Chem. 288, 7918-7929
   Abstract »    Full Text »    PDF »
Ubiquitination by the Membrane-associated RING-CH-8 (MARCH-8) Ligase Controls Steady-state Cell Surface Expression of Tumor Necrosis Factor-related Apoptosis Inducing Ligand (TRAIL) Receptor 1.
B. van de Kooij, I. Verbrugge, E. de Vries, M. Gijsen, V. Montserrat, C. Maas, J. Neefjes, and J. Borst (2013)
J. Biol. Chem. 288, 6617-6628
   Abstract »    Full Text »    PDF »
The proteasomal de-ubiquitinating enzyme POH1 promotes the double-strand DNA break response.
L. R. Butler, R. M. Densham, J. Jia, A. J. Garvin, H. R. Stone, V. Shah, D. Weekes, F. Festy, J. Beesley, and J. R. Morris (2012)
EMBO J. 31, 3918-3934
   Abstract »    Full Text »    PDF »
Methods for Quantification of in vivo Changes in Protein Ubiquitination following Proteasome and Deubiquitinase Inhibition.
N. D. Udeshi, D. R. Mani, T. Eisenhaure, P. Mertins, J. D. Jaffe, K. R. Clauser, N. Hacohen, and S. A. Carr (2012)
Mol. Cell. Proteomics 11, 148-159
   Abstract »    Full Text »    PDF »
Indirect inhibition of 26S proteasome activity in a cellular model of Huntington's disease.
M. S. Hipp, C. N. Patel, K. Bersuker, B. E. Riley, S. E. Kaiser, T. A. Shaler, M. Brandeis, and R. R. Kopito (2012)
J. Cell Biol. 196, 573-587
   Abstract »    Full Text »    PDF »
Bortezomib-induced "BRCAness" sensitizes multiple myeloma cells to PARP inhibitors.
P. Neri, L. Ren, K. Gratton, E. Stebner, J. Johnson, A. Klimowicz, P. Duggan, P. Tassone, A. Mansoor, D. A. Stewart, et al. (2011)
Blood 118, 6368-6379
   Abstract »    Full Text »    PDF »
Activation of Autophagy of Aggregation-prone Ubiquitinated Proteins by Timosaponin A-III.
C.-N. Lok, L.-K. Sy, F. Liu, and C.-M. Che (2011)
J. Biol. Chem. 286, 31684-31696
   Abstract »    Full Text »    PDF »
Estrogen-Dependent Gene Transcription in Human Breast Cancer Cells Relies upon Proteasome-Dependent Monoubiquitination of Histone H2B.
T. Prenzel, Y. Begus-Nahrmann, F. Kramer, M. Hennion, C. Hsu, T. Gorsler, C. Hintermair, D. Eick, E. Kremmer, M. Simons, et al. (2011)
Cancer Res. 71, 5739-5753
   Abstract »    Full Text »    PDF »
Role of TRIM5{alpha} RING Domain E3 Ubiquitin Ligase Activity in Capsid Disassembly, Reverse Transcription Blockade, and Restriction of Simian Immunodeficiency Virus.
J. Kim, C. Tipper, and J. Sodroski (2011)
J. Virol. 85, 8116-8132
   Abstract »    Full Text »    PDF »
Cell Polarity and Migration: Emerging Role for the Endosomal Sorting Machinery.
V. H. Lobert and H. Stenmark (2011)
Physiology 26, 171-180
   Abstract »    Full Text »    PDF »
LMP1 association with CD63 in endosomes and secretion via exosomes limits constitutive NF-{kappa}B activation.
F. J. Verweij, M. A. J. van Eijndhoven, E. S. Hopmans, T. Vendrig, T. Wurdinger, E. Cahir-McFarland, E. Kieff, D. Geerts, R. van der Kant, J. Neefjes, et al. (2011)
EMBO J. 30, 2115-2129
   Abstract »    Full Text »    PDF »
Temporal Profiling of Orexin Receptor-Arrestin-Ubiquitin Complexes Reveals Differences between Receptor Subtypes.
M. B. Dalrymple, W. C. Jaeger, K. A. Eidne, and K. D. G. Pfleger (2011)
J. Biol. Chem. 286, 16726-16733
   Abstract »    Full Text »    PDF »
Orderly Inactivation of the Key Checkpoint Protein Mitotic Arrest Deficient 2 (MAD2) during Mitotic Progression.
H. T. Ma and R. Y. C. Poon (2011)
J. Biol. Chem. 286, 13052-13059
   Abstract »    Full Text »    PDF »
Zymophagy, a Novel Selective Autophagy Pathway Mediated by VMP1-USP9x-p62, Prevents Pancreatic Cell Death.
D. Grasso, A. Ropolo, A. Lo Re, V. Boggio, M. I. Molejon, J. L. Iovanna, C. D. Gonzalez, R. Urrutia, and M. I. Vaccaro (2011)
J. Biol. Chem. 286, 8308-8324
   Abstract »    Full Text »    PDF »
BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair.
I. H. Ismail, C. Andrin, D. McDonald, and M. J. Hendzel (2010)
J. Cell Biol. 191, 45-60
   Abstract »    Full Text »    PDF »
A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses.
C. E. Lilley, M. S. Chaurushiya, C. Boutell, S. Landry, J. Suh, S. Panier, R. D. Everett, G. S. Stewart, D. Durocher, and M. D. Weitzman (2010)
EMBO J. 29, 943-955
   Abstract »    Full Text »    PDF »
Stressing the ubiquitin-proteasome system.
N. P. Dantuma and K. Lindsten (2010)
Cardiovasc Res 85, 263-271
   Abstract »    Full Text »    PDF »
Nucleotide excision repair-induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response.
J. A. Marteijn, S. Bekker-Jensen, N. Mailand, H. Lans, P. Schwertman, A. M. Gourdin, N. P. Dantuma, J. Lukas, and W. Vermeulen (2009)
J. Cell Biol. 186, 835-847
   Abstract »    Full Text »    PDF »
Mimicking proteasomal release of polyglutamine peptides initiates aggregation and toxicity.
M. Raspe, J. Gillis, H. Krol, S. Krom, K. Bosch, H. van Veen, and E. Reits (2009)
J. Cell Sci. 122, 3262-3271
   Abstract »    Full Text »    PDF »
Direct Antigen Presentation and Gap Junction Mediated Cross-Presentation during Apoptosis.
B. Pang, J. Neijssen, X. Qiao, L. Janssen, H. Janssen, C. Lippuner, and J. Neefjes (2009)
J. Immunol. 183, 1083-1090
   Abstract »    Full Text »    PDF »
Properties of the Ubiquitin-Pex5p Thiol Ester Conjugate.
C. P. Grou, A. F. Carvalho, M. P. Pinto, S. J. Huybrechts, C. Sa-Miranda, M. Fransen, and J. E. Azevedo (2009)
J. Biol. Chem. 284, 10504-10513
   Abstract »    Full Text »    PDF »
Selective Accumulation of Aggregation-Prone Proteasome Substrates in Response to Proteotoxic Stress.
F. A. Salomons, V. Menendez-Benito, C. Bottcher, B. A. McCray, J. P. Taylor, and N. P. Dantuma (2009)
Mol. Cell. Biol. 29, 1774-1785
   Abstract »    Full Text »    PDF »
The Rap80-BRCC36 de-ubiquitinating enzyme complex antagonizes RNF8-Ubc13-dependent ubiquitination events at DNA double strand breaks.
G. Shao, D. R. Lilli, J. Patterson-Fortin, K. A. Coleman, D. E. Morrissey, and R. A. Greenberg (2009)
PNAS 106, 3166-3171
   Abstract »    Full Text »    PDF »
Suppression of the Deubiquitinating Enzyme USP5 Causes the Accumulation of Unanchored Polyubiquitin and the Activation of p53.
S. Dayal, A. Sparks, J. Jacob, N. Allende-Vega, D. P. Lane, and M. K. Saville (2009)
J. Biol. Chem. 284, 5030-5041
   Abstract »    Full Text »    PDF »
The Cochaperone BAG2 Sweeps Paired Helical Filament- Insoluble Tau from the Microtubule.
D. C. Carrettiero, I. Hernandez, P. Neveu, T. Papagiannakopoulos, and K. S. Kosik (2009)
J. Neurosci. 29, 2151-2161
   Abstract »    Full Text »    PDF »
ERAD inhibitors integrate ER stress with an epigenetic mechanism to activate BH3-only protein NOXA in cancer cells.
Q. Wang, H. Mora-Jensen, M. A. Weniger, P. Perez-Galan, C. Wolford, T. Hai, D. Ron, W. Chen, W. Trenkle, A. Wiestner, et al. (2009)
PNAS 106, 2200-2205
   Abstract »    Full Text »    PDF »
Cellular Concentrations of DDB2 Regulate Dynamic Binding of DDB1 at UV-Induced DNA Damage.
S. Alekseev, M. S. Luijsterburg, A. Pines, B. Geverts, P.-O. Mari, G. Giglia-Mari, H. Lans, A. B. Houtsmuller, L. H. F. Mullenders, J. H. J. Hoeijmakers, et al. (2008)
Mol. Cell. Biol. 28, 7402-7413
   Abstract »    Full Text »    PDF »
Effect of Proliferating Cell Nuclear Antigen Ubiquitination and Chromatin Structure on the Dynamic Properties of the Y-family DNA Polymerases.
S. Sabbioneda, A. M. Gourdin, C. M. Green, A. Zotter, G. Giglia-Mari, A. Houtsmuller, W. Vermeulen, and A. R. Lehmann (2008)
Mol. Biol. Cell 19, 5193-5202
   Abstract »    Full Text »    PDF »
DOA1/UFD3 Plays a Role in Sorting Ubiquitinated Membrane Proteins into Multivesicular Bodies.
J. Ren, N. Pashkova, S. Winistorfer, and R. C. Piper (2008)
J. Biol. Chem. 283, 21599-21611
   Abstract »    Full Text »    PDF »
Quantitative Profiling of Ubiquitylated Proteins Reveals Proteasome Substrates and the Substrate Repertoire Influenced by the Rpn10 Receptor Pathway.
T. Mayor, J. Graumann, J. Bryan, M. J. MacCoss, and R. J. Deshaies (2007)
Mol. Cell. Proteomics 6, 1885-1895
   Abstract »    Full Text »    PDF »
Inhibitors of the Proteasome Suppress Homologous DNA Recombination in Mammalian Cells.
Y. Murakawa, E. Sonoda, L. J. Barber, W. Zeng, K. Yokomori, H. Kimura, A. Niimi, A. Lehmann, G. Y. Zhao, H. Hochegger, et al. (2007)
Cancer Res. 67, 8536-8543
   Abstract »    Full Text »    PDF »
Proteasome Function Is Required for DNA Damage Response and Fanconi Anemia Pathway Activation.
C. Jacquemont and T. Taniguchi (2007)
Cancer Res. 67, 7395-7405
   Abstract »    Full Text »    PDF »
DNA damage triggers nucleotide excision repair-dependent monoubiquitylation of histone H2A..
S. Bergink, F. A. Salomons, D. Hoogstraten, T. A.M. Groothuis, H. de Waard, J. Wu, L. Yuan, E. Citterio, A. B. Houtsmuller, J. Neefjes, et al. (2006)
Genes & Dev. 20, 1343-1352
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882