Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Cell Biol. 173 (4): 533-544

Copyright © 2006 by the Rockefeller University Press.


Article

Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate

Chad D. Knights1, Jason Catania1, Simone Di Giovanni1, Selen Muratoglu2, Ricardo Perez1, Amber Swartzbeck1, Andrew A. Quong3, Xiaojing Zhang4, Terry Beerman4, Richard G. Pestell3, , and Maria Laura Avantaggiati1

1 Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
2 Department of Pathology, Center for Vascular and Inflammatory Disease, University of Maryland, Baltimore, MD 21201
3 Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
4 Department of Pharmacology, Roswell Park Cancer Institute, Buffalo, NY 14203

Correspondence to Maria Laura Avantaggiati: ma364{at}georgetown.edu

Abstract: The activity of the p53 gene product is regulated by a plethora of posttranslational modifications. An open question is whether such posttranslational changes act redundantly or dependently upon one another. We show that a functional interference between specific acetylated and phosphorylated residues of p53 influences cell fate. Acetylation of lysine 320 (K320) prevents phosphorylation of crucial serines in the NH2-terminal region of p53; only allows activation of genes containing high-affinity p53 binding sites, such as p21/WAF; and promotes cell survival after DNA damage. In contrast, acetylation of K373 leads to hyperphosphorylation of p53 NH2-terminal residues and enhances the interaction with promoters for which p53 possesses low DNA binding affinity, such as those contained in proapoptotic genes, leading to cell death. Further, acetylation of each of these two lysine clusters differentially regulates the interaction of p53 with coactivators and corepressors and produces distinct gene-expression profiles. By analogy with the "histone code" hypothesis, we propose that the multiple biological activities of p53 are orchestrated and deciphered by different "p53 cassettes," each containing combination patterns of posttranslational modifications and protein–protein interactions.

C.D. Knights and J. Catania contributed equally to this paper.

Abbreviations used in this paper: ChIP, chromatin immunoprecipitation; CPI, cyclopropylpyrroloindole; EMSA, electrophoretic mobility shift assay; PCAF, p300/CBP-associated factor; WT, wild-type.

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Acetylation at Lysine 183 of Progesterone Receptor by p300 Accelerates DNA Binding Kinetics and Transactivation of Direct Target Genes.
H. H. Chung, S. K. Sze, A. S. L. Tay, and V. C.- L. Lin (2014)
J. Biol. Chem. 289, 2180-2194
   Abstract »    Full Text »    PDF »
ING5 Is a Tip60 Cofactor That Acetylates p53 in Response to DNA Damage.
N. Liu, J. Wang, J. Wang, R. Wang, Z. Liu, Y. Yu, and H. Lu (2013)
Cancer Res. 73, 3749-3760
   Abstract »    Full Text »    PDF »
Glucocorticoids induce senescence in primary human tenocytes by inhibition of sirtuin 1 and activation of the p53/p21 pathway: in vivo and in vitro evidence.
R. C. Poulsen, A. C. Watts, R. J. Murphy, S. J. Snelling, A. J. Carr, and P. A. Hulley (2013)
Ann Rheum Dis
   Abstract »    Full Text »
Specific Acetylation of p53 by HDAC Inhibition Prevents DNA Damage-Induced Apoptosis in Neurons.
C. Brochier, G. Dennis, M. A. Rivieccio, K. McLaughlin, G. Coppola, R. R. Ratan, and B. Langley (2013)
J. Neurosci. 33, 8621-8632
   Abstract »    Full Text »    PDF »
Another fork in the road--life or death decisions by the tumour suppressor p53.
L. A. Carvajal and J. J. Manfredi (2013)
EMBO Rep. 14, 414-421
   Abstract »    Full Text »    PDF »
Altered Binding Site Selection of p53 Transcription Cassettes by Hepatitis B Virus X Protein.
C. Chan, Y. Wang, P. K. H. Chow, A. Y. F. Chung, L. L. P. J. Ooi, and C. G. Lee (2013)
Mol. Cell. Biol. 33, 485-497
   Abstract »    Full Text »    PDF »
Xenobiotics and Loss of Cell Adhesion Drive Distinct Transcriptional Outcomes by Aryl Hydrocarbon Receptor Signaling.
N. Hao, K. L. Lee, S. G. B. Furness, C. Bosdotter, L. Poellinger, and M. L. Whitelaw (2012)
Mol. Pharmacol. 82, 1082-1093
   Abstract »    Full Text »    PDF »
Dynamically regulated sumoylation of HDAC2 controls p53 deacetylation and restricts apoptosis following genotoxic stress.
A. Brandl, T. Wagner, K. M. Uhlig, S. K. Knauer, R. H. Stauber, F. Melchior, G. Schneider, T. Heinzel, and O. H. Kramer (2012)
J Mol Cell Biol 4, 284-293
   Abstract »    Full Text »    PDF »
Mechanisms of p53 activation and physiological relevance in the developing kidney.
K. Aboudehen, S. Hilliard, Z. Saifudeen, and S. S. El-Dahr (2012)
Am J Physiol Renal Physiol 302, F928-F940
   Abstract »    Full Text »    PDF »
Formation of stress-specific p53 binding patterns is influenced by chromatin but not by modulation of p53 binding affinity to response elements.
J.-F. Millau, O. J. Bandele, J. Perron, N. Bastien, E. F. Bouchard, L. Gaudreau, D. A. Bell, and R. Drouin (2011)
Nucleic Acids Res. 39, 3053-3063
   Abstract »    Full Text »    PDF »
RNA content in the nucleolus alters p53 acetylation via MYBBP1A.
T. Kuroda, A. Murayama, N. Katagiri, Y.-m. Ohta, E. Fujita, H. Masumoto, M. Ema, S. Takahashi, K. Kimura, and J. Yanagisawa (2011)
EMBO J. 30, 1054-1066
   Abstract »    Full Text »    PDF »
Pleiotropic Effects of p300-mediated Acetylation on p68 and p72 RNA Helicase.
S. M. Mooney, A. Goel, A. B. D'Assoro, J. L. Salisbury, and R. Janknecht (2010)
J. Biol. Chem. 285, 30443-30452
   Abstract »    Full Text »    PDF »
HDMX-L Is Expressed from a Functional p53-responsive Promoter in the First Intron of the HDMX Gene and Participates in an Autoregulatory Feedback Loop to Control p53 Activity.
A. Phillips, A. Teunisse, S. Lam, K. Lodder, M. Darley, M. Emaduddin, A. Wolf, J. Richter, J. de Lange, M. Verlaan-de Vries, et al. (2010)
J. Biol. Chem. 285, 29111-29127
   Abstract »    Full Text »    PDF »
MDM2 recruitment of lysine methyltransferases regulates p53 transcriptional output.
L. Chen, Z. Li, A. K. Zwolinska, M. A. Smith, B. Cross, J. Koomen, Z.-M. Yuan, T. Jenuwein, J.-C. Marine, K. L. Wright, et al. (2010)
EMBO J. 29, 2538-2552
   Abstract »    Full Text »    PDF »
Transcriptional Regulation by P53.
R. Beckerman and C. Prives (2010)
Cold Spring Harb Perspect Biol 2, a000935
   Abstract »    Full Text »    PDF »
Multiple distinct molecular mechanisms influence sensitivity and resistance to MDM2 inhibitors in adult acute myelogenous leukemia.
J. Long, B. Parkin, P. Ouillette, D. Bixby, K. Shedden, H. Erba, S. Wang, and S. N. Malek (2010)
Blood 116, 71-80
   Abstract »    Full Text »    PDF »
Dysregulation of Platelet-Derived Growth Factor {beta}-Receptor Expression by {Delta}Np73 in Neuroblastoma.
D. Wetterskog, A. Moshiri, T. Ozaki, H. Uramoto, A. Nakagawara, and K. Funa (2009)
Mol. Cancer Res. 7, 2031-2039
   Abstract »    Full Text »    PDF »
p53 Pre- and Post-Binding Event Theories Revisited: Stresses Reveal Specific and Dynamic p53-Binding Patterns on the p21 Gene Promoter.
J.-F. Millau, N. Bastien, E. F. Bouchard, and R. Drouin (2009)
Cancer Res. 69, 8463-8471
   Abstract »    Full Text »    PDF »
Acetylation of the DNA Binding Domain Regulates Transcription-independent Apoptosis by p53.
S. M. Sykes, T. J. Stanek, A. Frank, M. E. Murphy, and S. B. McMahon (2009)
J. Biol. Chem. 284, 20197-20205
   Abstract »    Full Text »    PDF »
Identification of New p53 Acetylation Sites in COS-1 Cells.
A. Joubel, R. J. Chalkley, K. F. Medzihradszky, H. Hondermarck, and A. L. Burlingame (2009)
Mol. Cell. Proteomics 8, 1167-1173
   Abstract »    Full Text »    PDF »
Histone Deacetylase Inhibitors Prevent p53-Dependent and p53-Independent Bax-Mediated Neuronal Apoptosis through Two Distinct Mechanisms.
T. Uo, T. D. Veenstra, and R. S. Morrison (2009)
J. Neurosci. 29, 2824-2832
   Abstract »    Full Text »    PDF »
Chromatin Immunoprecipitation-on-Chip Reveals Stress-Dependent p53 Occupancy in Primary Normal Cells but Not in Established Cell Lines.
H. Shaked, I. Shiff, M. Kott-Gutkowski, Z. Siegfried, Y. Haupt, and I. Simon (2008)
Cancer Res. 68, 9671-9677
   Abstract »    Full Text »    PDF »
Bradykinin B2 receptor null mice harboring a Ser23-to-Ala substitution in the p53 gene are protected from renal dysgenesis.
S. S. El-Dahr, K. Aboudehen, and S. Dipp (2008)
Am J Physiol Renal Physiol 295, F1404-F1413
   Abstract »    Full Text »    PDF »
Necdin Regulates p53 Acetylation via Sirtuin1 to Modulate DNA Damage Response in Cortical Neurons.
K. Hasegawa and K. Yoshikawa (2008)
J. Neurosci. 28, 8772-8784
   Abstract »    Full Text »    PDF »
Quantitative Proteomics Analysis of the Effects of Ionizing Radiation in Wild Type and p53K317R Knock-in Mouse Thymocytes.
L. M. Miller Jenkins, S. J. Mazur, M. Rossi, O. Gaidarenko, Y. Xu, and E. Appella (2008)
Mol. Cell. Proteomics 7, 716-727
   Abstract »    Full Text »    PDF »
An ATM- and Rad3-related (ATR) Signaling Pathway and a Phosphorylation-Acetylation Cascade Are Involved in Activation of p53/p21Waf1/Cip1 in Response to 5-Aza-2'-deoxycytidine Treatment.
H. Wang, Y. Zhao, L. Li, M. A. McNutt, L. Wu, S. Lu, Y. Yu, W. Zhou, J. Feng, G. Chai, et al. (2008)
J. Biol. Chem. 283, 2564-2574
   Abstract »    Full Text »    PDF »
Activation of p53 Function by Human Transcriptional Coactivator PC4: Role of Protein-Protein Interaction, DNA Bending, and Posttranslational Modifications.
K. Batta and T. K. Kundu (2007)
Mol. Cell. Biol. 27, 7603-7614
   Abstract »    Full Text »    PDF »
PEDF induces p53-mediated apoptosis through PPAR gamma signaling in human umbilical vein endothelial cells.
T.-C. Ho, S.-L. Chen, Y.-C. Yang, C.-L. Liao, H.-C. Cheng, and Y.-P. Tsao (2007)
Cardiovasc Res 76, 213-223
   Abstract »    Full Text »    PDF »
Estrogen Receptor {alpha} Inhibits p53-Mediated Transcriptional Repression: Implications for the Regulation of Apoptosis.
A. Sayeed, S. D. Konduri, W. Liu, S. Bansal, F. Li, and G. M. Das (2007)
Cancer Res. 67, 7746-7755
   Abstract »    Full Text »    PDF »
Cellular vitamin C increases chromate toxicity via a death program requiring mismatch repair but not p53.
M. Reynolds and A. Zhitkovich (2007)
Carcinogenesis 28, 1613-1620
   Abstract »    Full Text »    PDF »
Metabolism, cytoskeleton and cellular signalling in the grip of protein N{epsilon} - and O-acetylation.
X.-J. Yang and S. Gregoire (2007)
EMBO Rep. 8, 556-562
   Abstract »    Full Text »    PDF »
The Lysine-specific Demethylase 1 Is Required for Cell Proliferation in Both p53-dependent and -independent Manners.
A. Scoumanne and X. Chen (2007)
J. Biol. Chem. 282, 15471-15475
   Abstract »    Full Text »    PDF »
Enhanced Deacetylation of p53 by the Anti-apoptotic Protein HSCO in Association with Histone Deacetylase 1.
H. Higashitsuji, H. Higashitsuji, T. Masuda, Y. Liu, K. Itoh, and J. Fujita (2007)
J. Biol. Chem. 282, 13716-13725
   Abstract »    Full Text »    PDF »
Site-specific Acetylation of p53 Directs Selective Transcription Complex Assembly.
S. Roy and M. Tenniswood (2007)
J. Biol. Chem. 282, 4765-4771
   Abstract »    Full Text »    PDF »
Outcomes of p53 activation - spoilt for choice.
K. H. Vousden (2006)
J. Cell Sci. 119, 5015-5020
   Abstract »    Full Text »    PDF »
The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration.
S. Di Giovanni, C. D. Knights, M. Rao, A. Yakovlev, J. Beers, J. Catania, M. L. Avantaggiati, and A. I. Faden (2006)
EMBO J. 25, 4084-4096
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882