Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Cell Biol. 174 (1): 115-125

Copyright © 2006 by the Rockefeller University Press.


Article

A disease- and phosphorylation-related nonmechanical function for keratin 8

Nam-On Ku, and M. Bishr Omary

Department of Medicine, Palo Alto VA Medical Center and Stanford University School of Medicine, Palo Alto, CA 94304

Correspondence to Nam-On Ku: namonku{at}stanford.edu

Abstract: Keratin 8 (K8) variants predispose to human liver injury via poorly understood mechanisms. We generated transgenic mice that overexpress the human disease-associated K8 Gly61-to-Cys (G61C) variant and showed that G61C predisposes to liver injury and apoptosis and dramatically inhibits K8 phosphorylation at serine 73 (S73) via stress-activated kinases. This led us to generate mice that overexpress K8 S73-to-Ala (S73A), which mimicked the susceptibility of K8 G61C mice to injury, thereby providing a molecular link between K8 phosphorylation and disease-associated mutation. Upon apoptotic stimulation, G61C and S73A hepatocytes have persistent and increased nonkeratin proapoptotic substrate phosphorylation by stress-activated kinases, compared with wild-type hepatocytes, in association with an inability to phosphorylate K8 S73. Our findings provide the first direct link between patient-related human keratin variants and liver disease predisposition. The highly abundant cytoskeletal protein K8, and possibly other keratins with the conserved S73-containing phosphoepitope, can protect tissue from injury by serving as a phosphate "sponge" for stress-activated kinases and thereby provide a novel nonmechanical function for intermediate filament proteins.

Abbreviations used in this paper: Ab, antibody; CREB, cAMP response element binding protein; EBS, epidermolysis bullosa simplex; HSE, high salt extraction; IF, intermediate filament; K, keratin; MLR, microcystin-LR; SAPK, stress-activated protein kinase; WT, wild type.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Mutation of caspase-digestion sites in keratin 18 interferes with filament reorganization, and predisposes to hepatocyte necrosis and loss of membrane integrity.
S. V. W. Weerasinghe, N.-O. Ku, P. J. Altshuler, R. Kwan, and M. B. Omary (2014)
J. Cell Sci. 127, 1464-1475
   Abstract »    Full Text »    PDF »
A Conserved Rod Domain Phosphotyrosine That Is Targeted by the Phosphatase PTP1B Promotes Keratin 8 Protein Insolubility and Filament Organization.
N. T. Snider, H. Park, and M. B. Omary (2013)
J. Biol. Chem. 288, 31329-31337
   Abstract »    Full Text »    PDF »
Predisposition to apoptosis in keratin 8-null liver is related to inactivation of NF-{kappa}B and SAPKs but not decreased c-Flip.
J. Lee, K.-H. Jang, H. Kim, Y. Lim, S. Kim, H.-N. Yoon, I. K. Chung, J. Roth, and N.-O. Ku (2013)
Biology Open 2, 695-702
   Abstract »    Full Text »    PDF »
Keratin 8 and 18 Loss in Epithelial Cancer Cells Increases Collective Cell Migration and Cisplatin Sensitivity through Claudin1 Up-regulation.
A.-M. Fortier, E. Asselin, and M. Cadrin (2013)
J. Biol. Chem. 288, 11555-11571
   Abstract »    Full Text »    PDF »
Keratins and disease at a glance.
R. L. Haines and E. B. Lane (2012)
J. Cell Sci. 125, 3923-3928
   Full Text »    PDF »
Aging Modulates Susceptibility to Mouse Liver Mallory-Denk Body Formation.
S. Hanada, M. Harada, M. Abe, J. Akiba, M. Sakata, R. Kwan, E. Taniguchi, T. Kawaguchi, H. Koga, E. Nagata, et al. (2012)
Journal of Histochemistry & Cytochemistry 60, 475-483
   Abstract »    Full Text »    PDF »
Keratin 8 phosphorylation regulates its transamidation and hepatocyte Mallory-Denk body formation.
R. Kwan, S. Hanada, M. Harada, P. Strnad, D. H. Li, and M. B. Omary (2012)
FASEB J 26, 2318-2326
   Abstract »    Full Text »    PDF »
Unique amino acid signatures that are evolutionarily conserved distinguish simple-type, epidermal and hair keratins.
P. Strnad, V. Usachov, C. Debes, F. Grater, D. A. D. Parry, and M. B. Omary (2011)
J. Cell Sci. 124, 4221-4232
   Abstract »    Full Text »    PDF »
Type I Keratin 17 Protein Is Phosphorylated on Serine 44 by p90 Ribosomal Protein S6 Kinase 1 (RSK1) in a Growth- and Stress-dependent Fashion.
X. Pan, L. A. Kane, J. E. Van Eyk, and P. A. Coulombe (2011)
J. Biol. Chem. 286, 42403-42413
   Abstract »    Full Text »    PDF »
Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia.
R. Windoffer, M. Beil, T. M. Magin, and R. E. Leube (2011)
J. Cell Biol. 194, 669-678
   Abstract »    Full Text »    PDF »
Insights into intermediate filament regulation from development to ageing.
C. L. Hyder, K. O. Isoniemi, E. S. Torvaldson, and J. E. Eriksson (2011)
J. Cell Sci. 124, 1363-1372
   Abstract »    Full Text »    PDF »
Absence of keratin 8 confers a paradoxical microflora-dependent resistance to apoptosis in the colon.
A. Habtezion, D. M. Toivola, M. N. Asghar, G. S. Kronmal, J. D. Brooks, E. C. Butcher, and M. B. Omary (2011)
PNAS 108, 1445-1450
   Abstract »    Full Text »    PDF »
Keratin Hypersumoylation Alters Filament Dynamics and Is a Marker for Human Liver Disease and Keratin Mutation.
N. T. Snider, S. V. W. Weerasinghe, J. A. Iniguez-Lluhi, H. Herrmann, and M. B. Omary (2011)
J. Biol. Chem. 286, 2273-2284
   Abstract »    Full Text »    PDF »
Differential Modulation of Keratin Expression by Sulforaphane Occurs via Nrf2-dependent and -independent Pathways in Skin Epithelia.
M. Kerns, D. DePianto, M. Yamamoto, and P. A. Coulombe (2010)
Mol. Biol. Cell 21, 4068-4075
   Abstract »    Full Text »    PDF »
O-GlcNAcylation Determines the Solubility, Filament Organization, and Stability of Keratins 8 and 18.
B. Srikanth, M. M. Vaidya, and R. D. Kalraiya (2010)
J. Biol. Chem. 285, 34062-34071
   Abstract »    Full Text »    PDF »
p38 MAP Kinase and MAPKAP Kinases MK2/3 Cooperatively Phosphorylate Epithelial Keratins.
M. B. Menon, J. Schwermann, A. K. Singh, M. Franz-Wachtel, O. Pabst, U. Seidler, M. B. Omary, A. Kotlyarov, and M. Gaestel (2010)
J. Biol. Chem. 285, 33242-33251
   Abstract »    Full Text »    PDF »
E1^E4-mediated keratin phosphorylation and ubiquitylation: a mechanism for keratin depletion in HPV16-infected epithelium.
P. B. McIntosh, P. Laskey, K. Sullivan, C. Davy, Q. Wang, D. J. Jackson, H. M. Griffin, and J. Doorbar (2010)
J. Cell Sci. 123, 2810-2822
   Abstract »    Full Text »    PDF »
Keratin 8/18 Modulation of Protein Kinase C-mediated Integrin-dependent Adhesion and Migration of Liver Epithelial Cells.
F. Bordeleau, L. Galarneau, S. Gilbert, A. Loranger, and N. Marceau (2010)
Mol. Biol. Cell 21, 1698-1713
   Abstract »    Full Text »    PDF »
Keratins modulate the shape and function of hepatocyte mitochondria: a mechanism for protection from apoptosis.
G.-Z. Tao, K. S. Looi, D. M. Toivola, P. Strnad, Q. Zhou, J. Liao, Y. Wei, A. Habtezion, and M. B. Omary (2009)
J. Cell Sci. 122, 3851-3855
   Abstract »    Full Text »    PDF »
Differential proteomic analysis of cyclosporine A-induced toxicity in renal proximal tubule cells.
M. Puigmule, J. Lopez-Hellin, G. Sune, O. Tornavaca, S. Camano, A. Tejedor, and A. Meseguer (2009)
Nephrol. Dial. Transplant. 24, 2672-2686
   Abstract »    Full Text »    PDF »
eIF3k regulates apoptosis in epithelial cells by releasing caspase 3 from keratin-containing inclusions.
Y.-M. Lin, Y.-R. Chen, J.-R. Lin, W.-J. Wang, A. Inoko, M. Inagaki, Y.-C. Wu, and R.-H. Chen (2008)
J. Cell Sci. 121, 2382-2393
   Abstract »    Full Text »    PDF »
The soft framework of the cellular machine.
D. A. Weitz and P. A. Janmey (2008)
PNAS 105, 1105-1106
   Full Text »    PDF »
Reg-II Is an Exocrine Pancreas Injury-Response Product That Is Up-Regulated by Keratin Absence or Mutation.
B. Zhong, P. Strnad, D. M. Toivola, G.-Z. Tao, X. Ji, H. B. Greenberg, and M. B. Omary (2007)
Mol. Biol. Cell 18, 4969-4978
   Abstract »    Full Text »    PDF »
Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm.
S. Kim and P. A. Coulombe (2007)
Genes & Dev. 21, 1581-1597
   Abstract »    Full Text »    PDF »
p38 MAPK-dependent shaping of the keratin cytoskeleton in cultured cells.
S. Woll, R. Windoffer, and R. E. Leube (2007)
J. Cell Biol. 177, 795-807
   Abstract »    Full Text »    PDF »
Interleukin-6 Induces Keratin Expression in Intestinal Epithelial Cells: POTENTIAL ROLE OF KERATIN-8 IN INTERLEUKIN-6-INDUCED BARRIER FUNCTION ALTERATIONS.
L. Wang, S. Srinivasan, A. L. Theiss, D. Merlin, and S. V. Sitaraman (2007)
J. Biol. Chem. 282, 8219-8227
   Abstract »    Full Text »    PDF »
Intermediate Filaments as Signaling Platforms.
H.-M. Pallari and J. E. Eriksson (2006)
Sci. STKE 2006, pe53
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882