Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Cell Biol. 174 (4): 593-604

Copyright © 2006 by the Rockefeller University Press.


Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments

Maria Grazia Lampugnani1,2, Fabrizio Orsenigo1, Maria Cristina Gagliani4, Carlo Tacchetti4, , and Elisabetta Dejana1,2,3

1 IFOM, Fondazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, 2 Mario Negri Institute for Pharmacological Research, and 3 Department of Biomolecular and Biotechnological Sciences, Faculty of Sciences, University of Milan, 20139 Milan, Italy
4 Department of Experimental Medicine, University of Genova, 16146 Genova, Italy

Correspondence to Elisabetta Dejana: elisabetta.dejana{at}

Abstract: Receptor endocytosis is a fundamental step in controlling the magnitude, duration, and nature of cell signaling events. Confluent endothelial cells are contact inhibited in their growth and respond poorly to the proliferative signals of vascular endothelial growth factor (VEGF). In a previous study, we found that the association of vascular endothelial cadherin (VEC) with VEGF receptor (VEGFR) type 2 contributes to density-dependent growth inhibition (Lampugnani, G.M., A. Zanetti, M. Corada, T. Takahashi, G. Balconi, F. Breviario, F. Orsenigo, A. Cattelino, R. Kemler, T.O. Daniel, and E. Dejana. 2003. J. Cell Biol. 161:793–804). In the present study, we describe the mechanism through which VEC reduces VEGFR-2 signaling. We found that VEGF induces the clathrin-dependent internalization of VEGFR-2. When VEC is absent or not engaged at junctions, VEGFR-2 is internalized more rapidly and remains in endosomal compartments for a longer time. Internalization does not terminate its signaling; instead, the internalized receptor is phosphorylated, codistributes with active phospholipase C–{gamma}, and activates p44/42 mitogen-activated protein kinase phosphorylation and cell proliferation. Inhibition of VEGFR-2 internalization reestablishes the contact inhibition of cell growth, whereas silencing the junction-associated density-enhanced phosphatase-1/CD148 phosphatase restores VEGFR-2 internalization and signaling. Thus, VEC limits cell proliferation by retaining VEGFR-2 at the membrane and preventing its internalization into signaling compartments.

Abbreviations used in this paper: EEA-1, early endosomal antigen-1; DEP-1, density-enhanced phosphatase-1; GSH, glutathione; HUVEC, human umbilical vein endothelial cell; PY, phosphotyrosine; VEC, vascular endothelial cadherin; VEGFR, VEGF receptor.

Dynamin 2 regulation of integrin endocytosis, but not VEGF signaling, is crucial for developmental angiogenesis.
M. Y. Lee, A. Skoura, E. J. Park, S. Landskroner-Eiger, L. Jozsef, A. K. Luciano, T. Murata, S. Pasula, Y. Dong, M. Bouaouina, et al. (2014)
Development 141, 1465-1472
   Abstract »    Full Text »    PDF »
Congenic Fine-Mapping Identifies a Major Causal Locus for Variation in the Native Collateral Circulation and Ischemic Injury in Brain and Lower Extremity.
R. Sealock, H. Zhang, J. L. Lucitti, S. M. Moore, and J. E. Faber (2014)
Circ. Res. 114, 660-671
   Abstract »    Full Text »    PDF »
Inhibiting the Response to VEGF in Diabetes.
J. Moriya and N. Ferrara (2014)
Science Signaling 7, pe1
   Abstract »    Full Text »    PDF »
A Ligand-Independent VEGFR2 Signaling Pathway Limits Angiogenic Responses in Diabetes.
C. M. Warren, S. Ziyad, A. Briot, A. Der, and M. L. Iruela-Arispe (2014)
Science Signaling 7, ra1
   Abstract »    Full Text »    PDF »
Hypoxia Induces Permeability and Giant Cell Responses of Andes Virus-Infected Pulmonary Endothelial Cells by Activating the mTOR-S6K Signaling Pathway.
I. N. Gavrilovskaya, E. E. Gorbunova, and E. R. Mackow (2013)
J. Virol. 87, 12999-13008
   Abstract »    Full Text »    PDF »
Effects of Membrane Trafficking on Signaling by Receptor Tyrosine Kinases.
M. Miaczynska (2013)
Cold Spring Harb Perspect Biol 5, a009035
   Abstract »    Full Text »    PDF »
Endocytosis of Receptor Tyrosine Kinases.
L. K. Goh and A. Sorkin (2013)
Cold Spring Harb Perspect Biol 5, a017459
   Abstract »    Full Text »    PDF »
Endothelial cell-by-cell profiling reveals the temporal dynamics of VEGFR1 and VEGFR2 membrane localization after murine hindlimb ischemia.
P. I. Imoukhuede, A. O. Dokun, B. H. Annex, and A. S. Popel (2013)
Am J Physiol Heart Circ Physiol 304, H1085-H1093
   Abstract »    Full Text »    PDF »
Thioredoxin-Interacting Protein Mediates Sustained VEGFR2 Signaling in Endothelial Cells Required for Angiogenesis.
S.-Y. Park, X. Shi, J. Pang, C. Yan, and B. C. Berk (2013)
Arterioscler Thromb Vasc Biol 33, 737-743
   Abstract »    Full Text »    PDF »
Essential Role for Endocytosis in the Growth Factor-stimulated Activation of ERK1/2 in Endothelial Cells.
M. Gourlaouen, J. C. Welti, N. S. Vasudev, and A. R. Reynolds (2013)
J. Biol. Chem. 288, 7467-7480
   Abstract »    Full Text »    PDF »
Vascular Endothelial Growth Factor-Angiopoietin Chimera With Improved Properties for Therapeutic Angiogenesis.
A. Anisimov, D. Tvorogov, A. Alitalo, V.-M. Leppanen, Y. An, E. C. Han, F. Orsenigo, E. I. Gaal, T. Holopainen, Y. J. Koh, et al. (2013)
Circulation 127, 424-434
   Abstract »    Full Text »    PDF »
Intermedin: A Novel Regulator for Vascular Remodeling and Tumor Vessel Normalization by Regulating Vascular Endothelial-Cadherin and Extracellular Signal-Regulated Kinase.
W. Zhang, L.-J. Wang, F. Xiao, Y. Wei, W. Ke, and H.-B. Xin (2012)
Arterioscler Thromb Vasc Biol 32, 2721-2732
   Abstract »    Full Text »    PDF »
Endothelial Cell-to-Cell Junctions: Adhesion and Signaling in Physiology and Pathology.
M. G. Lampugnani (2012)
Cold Spring Harb Perspect Med 2, a006528
   Abstract »    Full Text »    PDF »
Andes Virus Infection of Lymphatic Endothelial Cells Causes Giant Cell and Enhanced Permeability Responses That Are Rapamycin and Vascular Endothelial Growth Factor C Sensitive.
I. N. Gavrilovskaya, E. E. Gorbunova, and E. R. Mackow (2012)
J. Virol. 86, 8765-8772
   Abstract »    Full Text »    PDF »
An Inside View: VEGF Receptor Trafficking and Signaling.
M. Simons (2012)
Physiology 27, 213-222
   Abstract »    Full Text »    PDF »
Eosinophil crystalloid granules: structure, function, and beyond.
V. S. Muniz, P. F. Weller, and J. S. Neves (2012)
J. Leukoc. Biol. 92, 281-288
   Abstract »    Full Text »    PDF »
Signal Transduction by Vascular Endothelial Growth Factor Receptors.
S. Koch and L. Claesson-Welsh (2012)
Cold Spring Harb Perspect Med 2, a006502
   Abstract »    Full Text »    PDF »
Classical and desmosomal cadherins at a glance.
M. Saito, D. K. Tucker, D. Kohlhorst, C. M. Niessen, and A. P. Kowalczyk (2012)
J. Cell Sci. 125, 2547-2552
   Full Text »    PDF »
The Mechanisms of Cerebral Vascular Dysfunction and Neuroinflammation by MMP-Mediated Degradation of VEGFR-2 in Alcohol Ingestion.
P. M. A. Muneer, S. Alikunju, A. M. Szlachetka, and J. Haorah (2012)
Arterioscler Thromb Vasc Biol 32, 1167-1177
   Abstract »    Full Text »    PDF »
Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth.
P. Hamerlik, J. D. Lathia, R. Rasmussen, Q. Wu, J. Bartkova, M. Lee, P. Moudry, J. Bartek Jr., W. Fischer, J. Lukas, et al. (2012)
J. Exp. Med. 209, 507-520
   Abstract »    Full Text »    PDF »
Necl-5/Poliovirus Receptor Interacts With VEGFR2 and Regulates VEGF-Induced Angiogenesis.
M. Kinugasa, H. Amano, S. Satomi-Kobayashi, K. Nakayama, M. Miyata, Y. Kubo, Y. Nagamatsu, Y. Kurogane, F. Kureha, S. Yamana, et al. (2012)
Circ. Res. 110, 716-726
   Abstract »    Full Text »    PDF »
The Ubiquitin-Proteasome System Meets Angiogenesis.
N. Rahimi (2012)
Mol. Cancer Ther. 11, 538-548
   Abstract »    Full Text »    PDF »
Endogenous Vascular Endothelial Growth Factor-A (VEGF-A) Maintains Endothelial Cell Homeostasis by Regulating VEGF Receptor-2 Transcription.
G. E, Y. Cao, S. Bhattacharya, S. Dutta, E. Wang, and D. Mukhopadhyay (2012)
J. Biol. Chem. 287, 3029-3041
   Abstract »    Full Text »    PDF »
Stabilizing the VE-cadherin-catenin complex blocks leukocyte extravasation and vascular permeability.
D. Schulte, V. Kuppers, N. Dartsch, A. Broermann, H. Li, A. Zarbock, O. Kamenyeva, F. Kiefer, A. Khandoga, S. Massberg, et al. (2011)
EMBO J. 30, 4157-4170
   Abstract »    Full Text »    PDF »
T Cells Are Not Required for Pathogenesis in the Syrian Hamster Model of Hantavirus Pulmonary Syndrome.
C. D. Hammerbeck and J. W. Hooper (2011)
J. Virol. 85, 9929-9944
   Abstract »    Full Text »    PDF »
Galectin-3 Protein Modulates Cell Surface Expression and Activation of Vascular Endothelial Growth Factor Receptor 2 in Human Endothelial Cells.
A. I. Markowska, K. C. Jefferies, and N. Panjwani (2011)
J. Biol. Chem. 286, 29913-29921
   Abstract »    Full Text »    PDF »
Different sorts for different sprouts.
S. Ponnambalam (2011)
Blood 118, 490-491
   Full Text »    PDF »
Neuropilin-1 promotes VEGFR-2 trafficking through Rab11 vesicles thereby specifying signal output.
K. Ballmer-Hofer, A. E. Andersson, L. E. Ratcliffe, and P. Berger (2011)
Blood 118, 816-826
   Abstract »    Full Text »    PDF »
Epileptiform Activity Induces Vascular Remodeling and Zonula Occludens 1 Downregulation in Organotypic Hippocampal Cultures: Role of VEGF Signaling Pathways.
M. Morin-Brureau, A. Lebrun, M.-C. Rousset, L. Fagni, J. Bockaert, F. de Bock, and M. Lerner-Natoli (2011)
J. Neurosci. 31, 10677-10688
   Abstract »    Full Text »    PDF »
PEST Motif Serine and Tyrosine Phosphorylation Controls Vascular Endothelial Growth Factor Receptor 2 Stability and Downregulation.
R. D. Meyer, S. Srinivasan, A. J. Singh, J. E. Mahoney, K. R. Gharahassanlou, and N. Rahimi (2011)
Mol. Cell. Biol. 31, 2010-2025
   Abstract »    Full Text »    PDF »
Priming of the vascular endothelial growth factor signaling pathway by thrombospondin-1, CD36, and spleen tyrosine kinase.
S. Kazerounian, M. Duquette, M. A. Reyes, J. T. Lawler, K. Song, C. Perruzzi, L. Primo, R. Khosravi-Far, F. Bussolino, I. Rabinovitz, et al. (2011)
Blood 117, 4658-4666
   Abstract »    Full Text »    PDF »
Matrix stiffening sensitizes epithelial cells to EGF and enables the loss of contact inhibition of proliferation.
J.-H. Kim and A. R. Asthagiri (2011)
J. Cell Sci. 124, 1280-1287
   Abstract »    Full Text »    PDF »
Tissue Organization by Cadherin Adhesion Molecules: Dynamic Molecular and Cellular Mechanisms of Morphogenetic Regulation.
C. M. Niessen, D. Leckband, and A. S. Yap (2011)
Physiol Rev 91, 691-731
   Abstract »    Full Text »    PDF »
Reduced VEGF Production, Angiogenesis, and Vascular Regrowth Contribute to the Antitumor Properties of Dual mTORC1/mTORC2 Inhibitors.
B. L. Falcon, S. Barr, P. C. Gokhale, J. Chou, J. Fogarty, P. Depeille, M. Miglarese, D. M. Epstein, and D. M. McDonald (2011)
Cancer Res. 71, 1573-1583
   Abstract »    Full Text »    PDF »
Regulation of vascular endothelial growth factor receptor 2 trafficking and angiogenesis by Golgi localized t-SNARE syntaxin 6.
V. Manickam, A. Tiwari, J.-J. Jung, R. Bhattacharya, A. Goel, D. Mukhopadhyay, and A. Choudhury (2011)
Blood 117, 1425-1435
   Abstract »    Full Text »    PDF »
Rab5a-mediated localization of claudin-1 is regulated by proteasomes in endothelial cells.
M. Asaka, T. Hirase, A. Hashimoto-Komatsu, and K. Node (2011)
Am J Physiol Cell Physiol 300, C87-C96
   Abstract »    Full Text »    PDF »
Phosphorylation of VE-cadherin controls endothelial phenotypes via p120-catenin coupling and Rac1 activation.
K. Hatanaka, M. Simons, and M. Murakami (2011)
Am J Physiol Heart Circ Physiol 300, H162-H172
   Abstract »    Full Text »    PDF »
Nbr1 Is a Novel Inhibitor of Ligand-Mediated Receptor Tyrosine Kinase Degradation.
F. K. Mardakheh, G. Auciello, T. R. Dafforn, J. Z. Rappoport, and J. K. Heath (2010)
Mol. Cell. Biol. 30, 5672-5685
   Abstract »    Full Text »    PDF »
Thrombospondin-1 Inhibits VEGF Receptor-2 Signaling by Disrupting Its Association with CD47.
S. Kaur, G. Martin-Manso, M. L. Pendrak, S. H. Garfield, J. S. Isenberg, and D. D. Roberts (2010)
J. Biol. Chem. 285, 38923-38932
   Abstract »    Full Text »    PDF »
Eph/ephrin molecules--a hub for signaling and endocytosis.
M. E. Pitulescu and R. H. Adams (2010)
Genes & Dev. 24, 2480-2492
   Abstract »    Full Text »    PDF »
Andes Virus Regulation of Cellular MicroRNAs Contributes to Hantavirus-Induced Endothelial Cell Permeability.
T. Pepini, E. E. Gorbunova, I. N. Gavrilovskaya, J. E. Mackow, and E. R. Mackow (2010)
J. Virol. 84, 11929-11936
   Abstract »    Full Text »    PDF »
Andes Virus Disrupts the Endothelial Cell Barrier by Induction of Vascular Endothelial Growth Factor and Downregulation of VE-Cadherin.
P. Shrivastava-Ranjan, P. E. Rollin, and C. F. Spiropoulou (2010)
J. Virol. 84, 11227-11234
   Abstract »    Full Text »    PDF »
Pathogenic Hantaviruses Andes Virus and Hantaan Virus Induce Adherens Junction Disassembly by Directing Vascular Endothelial Cadherin Internalization in Human Endothelial Cells.
E. Gorbunova, I. N. Gavrilovskaya, and E. R. Mackow (2010)
J. Virol. 84, 7405-7411
   Abstract »    Full Text »    PDF »
Mechanical Signals Activate Vascular Endothelial Growth Factor Receptor-2 To Upregulate Endothelial Cell Proliferation during Inflammation.
J. Liu and S. Agarwal (2010)
J. Immunol. 185, 1215-1221
   Abstract »    Full Text »    PDF »
Low Density Lipoprotein Receptor-related Protein 1 (LRP1) Forms a Signaling Complex with Platelet-derived Growth Factor Receptor-{beta} in Endosomes and Regulates Activation of the MAPK Pathway.
S. C. Muratoglu, I. Mikhailenko, C. Newton, M. Migliorini, and D. K. Strickland (2010)
J. Biol. Chem. 285, 14308-14317
   Abstract »    Full Text »    PDF »
Histone Deacetylase 7 Controls Endothelial Cell Growth Through Modulation of {beta}-Catenin.
A. Margariti, A. Zampetaki, Q. Xiao, B. Zhou, E. Karamariti, D. Martin, X. Yin, M. Mayr, H. Li, Z. Zhang, et al. (2010)
Circ. Res. 106, 1202-1211
   Abstract »    Full Text »    PDF »
Stabilization of VEGFR2 Signaling by Cerebral Cavernous Malformation 3 Is Critical for Vascular Development.
Y. He, H. Zhang, L. Yu, M. Gunel, T. J. Boggon, H. Chen, and W. Min (2010)
Science Signaling 3, ra26
   Abstract »    Full Text »    PDF »
Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells.
T. T. Chen, A. Luque, S. Lee, S. M. Anderson, T. Segura, and M. L. Iruela-Arispe (2010)
J. Cell Biol. 188, 595-609
   Abstract »    Full Text »    PDF »
The binding of NCAM to FGFR1 induces a specific cellular response mediated by receptor trafficking.
C. Francavilla, P. Cattaneo, V. Berezin, E. Bock, D. Ami, A. de Marco, G. Christofori, and U. Cavallaro (2009)
J. Cell Biol. 187, 1101-1116
   Abstract »    Full Text »    PDF »
Adhesive and Signaling Functions of Cadherins and Catenins in Vertebrate Development.
E. Stepniak, G. L. Radice, and V. Vasioukhin (2009)
Cold Spring Harb Perspect Biol 1, a002949
   Abstract »    Full Text »    PDF »
Endosomes: A legitimate platform for the signaling train.
J. E. Murphy, B. E. Padilla, B. Hasdemir, G. S. Cottrell, and N. W. Bunnett (2009)
PNAS 106, 17615-17622
   Abstract »    Full Text »    PDF »
Junctional Music that the Nucleus Hears: Cell-Cell Contact Signaling and the Modulation of Gene Activity.
P. D. McCrea, D. Gu, and M. S. Balda (2009)
Cold Spring Harb Perspect Biol 1, a002923
   Abstract »    Full Text »    PDF »
Tumor Suppressor Density-enhanced Phosphatase-1 (DEP-1) Inhibits the RAS Pathway by Direct Dephosphorylation of ERK1/2 Kinases.
F. Sacco, M. Tinti, A. Palma, E. Ferrari, A. P. Nardozza, R. H. van Huijsduijnen, T. Takahashi, L. Castagnoli, and G. Cesareni (2009)
J. Biol. Chem. 284, 22048-22058
   Abstract »    Full Text »    PDF »
Tunable interplay between epidermal growth factor and cell-cell contact governs the spatial dynamics of epithelial growth.
J.-H. Kim, K. Kushiro, N. A. Graham, and A. R. Asthagiri (2009)
PNAS 106, 11149-11153
   Abstract »    Full Text »    PDF »
Rab GTPase Regulation of VEGFR2 Trafficking and Signaling in Endothelial Cells.
H. M. Jopling, A. F. Odell, N. M. Hooper, I. C. Zachary, J. H. Walker, and S. Ponnambalam (2009)
Arterioscler Thromb Vasc Biol 29, 1119-1124
   Abstract »    Full Text »    PDF »
Molecular mechanisms of ovarian hyperstimulation syndrome: paracrine reduction of endothelial claudin 5 by hCG in vitro is associated with increased endothelial permeability.
M. Rodewald, D. Herr, W.C. Duncan, H.M. Fraser, G. Hack, R. Konrad, F. Gagsteiger, R. Kreienberg, and C. Wulff (2009)
Hum. Reprod. 24, 1191-1199
   Abstract »    Full Text »    PDF »
Role and Therapeutic Potential of VEGF in the Nervous System.
C. Ruiz de Almodovar, D. Lambrechts, M. Mazzone, and P. Carmeliet (2009)
Physiol Rev 89, 607-648
   Abstract »    Full Text »    PDF »
p120-Catenin Inhibits VE-Cadherin Internalization through a Rho-independent Mechanism.
C. M. Chiasson, K. B. Wittich, P. A. Vincent, V. Faundez, and A. P. Kowalczyk (2009)
Mol. Biol. Cell 20, 1970-1980
   Abstract »    Full Text »    PDF »
JAM-A promotes neutrophil chemotaxis by controlling integrin internalization and recycling.
M. R. Cera, M. Fabbri, C. Molendini, M. Corada, F. Orsenigo, M. Rehberg, C. A. Reichel, F. Krombach, R. Pardi, and E. Dejana (2009)
J. Cell Sci. 122, 268-277
   Abstract »    Full Text »    PDF »
Kaposi's Sarcoma-Associated Herpesvirus Disrupts Adherens Junctions and Increases Endothelial Permeability by Inducing Degradation of VE-Cadherin.
L.-W. Qian, W. Greene, F. Ye, and S.-J. Gao (2008)
J. Virol. 82, 11902-11912
   Abstract »    Full Text »    PDF »
Identification of a developmentally regulated pathway of membrane retrieval in neuronal growth cones.
D. Bonanomi, E. F. Fornasiero, G. Valdez, S. Halegoua, F. Benfenati, A. Menegon, and F. Valtorta (2008)
J. Cell Sci. 121, 3757-3769
   Abstract »    Full Text »    PDF »
Combinatorial interaction between CCM pathway genes precipitates hemorrhagic stroke.
A. V. Gore, M. G. Lampugnani, L. Dye, E. Dejana, and B. M. Weinstein (2008)
Dis. Model. Mech. 1, 275-281
   Abstract »    Full Text »    PDF »
The protein tyrosine phosphatase TCPTP controls VEGFR2 signalling.
E. Mattila, K. Auvinen, M. Salmi, and J. Ivaska (2008)
J. Cell Sci. 121, 3570-3580
   Abstract »    Full Text »    PDF »
Integrins: The Keys to Unlocking Angiogenesis.
R. Silva, G. D'Amico, K. M. Hodivala-Dilke, and L. E. Reynolds (2008)
Arterioscler Thromb Vasc Biol 28, 1703-1713
   Abstract »    Full Text »    PDF »
Vascular Endothelial Growth Factor and Semaphorin Induce Neuropilin-1 Endocytosis via Separate Pathways.
A. Salikhova, L. Wang, A. A. Lanahan, M. Liu, M. Simons, W. P. J. Leenders, D. Mukhopadhyay, and A. Horowitz (2008)
Circ. Res. 103, e71-e79
   Abstract »    Full Text »    PDF »
Deciphering the functional role of endothelial junctions by using in vivo models.
D. Nyqvist, C. Giampietro, and E. Dejana (2008)
EMBO Rep. 9, 742-747
   Abstract »    Full Text »    PDF »
The role of adherens junctions and VE-cadherin in the control of vascular permeability.
E. Dejana, F. Orsenigo, and M. G. Lampugnani (2008)
J. Cell Sci. 121, 2115-2122
   Abstract »    Full Text »    PDF »
Targets of Tyrosine Nitration in Diabetic Rat Retina.
X. Zhan, Y. Du, J. S. Crabb, X. Gu, T. S. Kern, and J. W. Crabb (2008)
Mol. Cell. Proteomics 7, 864-874
   Abstract »    Full Text »    PDF »
Differential Regulation of VEGF Signaling by PKC-{alpha} and PKC-{epsilon} in Endothelial Cells.
C. Rask-Madsen and G. L. King (2008)
Arterioscler Thromb Vasc Biol 28, 919-924
   Abstract »    Full Text »    PDF »
Non-canonical fibroblast growth factor signalling in angiogenesis.
M. Murakami, A. Elfenbein, and M. Simons (2008)
Cardiovasc Res 78, 223-231
   Abstract »    Full Text »    PDF »
VE-cadherin is a critical endothelial regulator of TGF-{beta} signalling.
N. Rudini, A. Felici, C. Giampietro, M. Lampugnani, M. Corada, K. Swirsding, M. Garre, S. Liebner, M. Letarte, P. ten Dijke, et al. (2008)
EMBO J. 27, 993-1004
   Abstract »    Full Text »    PDF »
Cytoplasmic provenance of STAT3 and PY-STAT3 in the endolysosomal compartments in pulmonary arterial endothelial and smooth muscle cells: implications in pulmonary arterial hypertension.
S. Mukhopadhyay, M. Shah, F. Xu, K. Patel, R. M. Tuder, and P. B. Sehgal (2008)
Am J Physiol Lung Cell Mol Physiol 294, L449-L468
   Abstract »    Full Text »    PDF »
VE-Cadherin: The Major Endothelial Adhesion Molecule Controlling Cellular Junctions and Blood Vessel Formation.
D. Vestweber (2008)
Arterioscler Thromb Vasc Biol 28, 223-232
   Abstract »    Full Text »    PDF »
Thrombospondins Use the VLDL Receptor and a Nonapoptotic Pathway to Inhibit Cell Division in Microvascular Endothelial Cells.
A. Oganesian, L. C. Armstrong, M. M. Migliorini, D. K. Strickland, and P. Bornstein (2008)
Mol. Biol. Cell 19, 563-571
   Abstract »    Full Text »    PDF »
Differential Involvement of Vascular Endothelial Growth Factor in the Survival of Hypoxic Colon Cancer Cells.
M. Calvani, D. Trisciuoglio, C. Bergamaschi, R. H. Shoemaker, and G. Melillo (2008)
Cancer Res. 68, 285-291
   Abstract »    Full Text »    PDF »
Regulation of tight junction proteins occludin and claudin 5 in the primate ovary during the ovulatory cycle and after inhibition of vascular endothelial growth factor.
M. Rodewald, D. Herr, H.M. Fraser, G. Hack, R. Kreienberg, and C. Wulff (2007)
Mol. Hum. Reprod. 13, 781-789
   Abstract »    Full Text »    PDF »
Src-mediated Phosphorylation of Hsp90 in Response to Vascular Endothelial Growth Factor (VEGF) Is Required for VEGF Receptor-2 Signaling to Endothelial NO Synthase.
M. Duval, F. Le B uf, J. Huot, and J.-P. Gratton (2007)
Mol. Biol. Cell 18, 4659-4668
   Abstract »    Full Text »    PDF »
Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization.
D. J. Nolan, A. Ciarrocchi, A. S. Mellick, J. S. Jaggi, K. Bambino, S. Gupta, E. Heikamp, M. R. McDevitt, D. A. Scheinberg, R. Benezra, et al. (2007)
Genes & Dev. 21, 1546-1558
   Abstract »    Full Text »    PDF »
E-Cadherin Homophilic Ligation Inhibits Cell Growth and Epidermal Growth Factor Receptor Signaling Independently of Other Cell Interactions.
M. Perrais, X. Chen, M. Perez-Moreno, and B. M. Gumbiner (2007)
Mol. Biol. Cell 18, 2013-2025
   Abstract »    Full Text »    PDF »
Phosphorylation of Tyrosine 801 of Vascular Endothelial Growth Factor Receptor-2 Is Necessary for Akt-dependent Endothelial Nitric-oxide Synthase Activation and Nitric Oxide Release from Endothelial Cells.
M. Garcia Blanes, M. Oubaha, Y. Rautureau, and J.-P. Gratton (2007)
J. Biol. Chem. 282, 10660-10669
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882