Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Cell Biol. 176 (2): 231-241

Copyright © 2007 by the Rockefeller University Press.


Novel cell death program leads to neutrophil extracellular traps

Tobias A. Fuchs1,5, Ulrike Abed1,2, Christian Goosmann1,2, Robert Hurwitz3, Ilka Schulze4, Volker Wahn4, Yvette Weinrauch5, Volker Brinkmann2, , and Arturo Zychlinsky1

1 Department for Cellular Microbiology, 2 Microscopy Core Facility, and 3 Protein Purification Core Facility, Max-Planck Institute for Infection Biology, 10117 Berlin, Germany
4 Department for Paediatric Pneumology and Immunology, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
5 Department of Microbiology, New York University School of Medicine, New York, NY 10016

Correspondence to Arturo Zychlinsky: zychlinsky{at}

Abstract: Neutrophil extracellular traps (NETs) are extracellular structures composed of chromatin and granule proteins that bind and kill microorganisms. We show that upon stimulation, the nuclei of neutrophils lose their shape, and the eu- and heterochromatin homogenize. Later, the nuclear envelope and the granule membranes disintegrate, allowing the mixing of NET components. Finally, the NETs are released as the cell membrane breaks. This cell death process is distinct from apoptosis and necrosis and depends on the generation of reactive oxygen species (ROS) by NADPH oxidase. Patients with chronic granulomatous disease carry mutations in NADPH oxidase and cannot activate this cell-death pathway or make NETs. This novel ROS-dependent death allows neutrophils to fulfill their antimicrobial function, even beyond their lifespan.

V. Brinkmann and A. Zychlinsky contributed equally to this paper.

Abbreviations used in this paper: AT, 3-amino-1,2,4-triazole; CGD, chronic granulomatous disease; DPI, diphenylene iodonium; GO, glucose oxidase; IL, interleukin; LPS, lipopolysaccharide; MNase, micrococcal nuclease; MOI, multiplicity of infection; NETs, neutrophil extracellular traps; PBMC, peripheral blood mononuclear cells; PS, phosphatidylserine; ROS, reactive oxygen species.

NADPH Oxidase Promotes Neutrophil Extracellular Trap Formation in Pulmonary Aspergillosis.
M. Rohm, M. J. Grimm, A. C. D'Auria, N. G. Almyroudis, B. H. Segal, and C. F. Urban (2014)
Infect. Immun. 82, 1766-1777
   Abstract »    Full Text »    PDF »
Synchronized integrin engagement and chemokine activation is crucial in neutrophil extracellular trap-mediated sterile inflammation.
J. Rossaint, J. M. Herter, H. Van Aken, M. Napirei, Y. Doring, C. Weber, O. Soehnlein, and A. Zarbock (2014)
Blood 123, 2573-2584
   Abstract »    Full Text »    PDF »
3'-Nucleotidase/Nuclease Activity Allows Leishmania Parasites To Escape Killing by Neutrophil Extracellular Traps.
A. B. Guimaraes-Costa, T. S. DeSouza-Vieira, R. Paletta-Silva, A. L. Freitas-Mesquita, J. R. Meyer-Fernandes, and E. M. Saraiva (2014)
Infect. Immun. 82, 1732-1740
   Abstract »    Full Text »    PDF »
Modification of heparanase gene expression in response to conditioning and LPS treatment: strong correlation to rs4693608 SNP.
O. Ostrovsky, A. Shimoni, P. Baryakh, Y. Morgulis, M. Mayorov, K. Beider, A. Shteingauz, N. Ilan, I. Vlodavsky, and A. Nagler (2014)
J. Leukoc. Biol. 95, 677-688
   Abstract »    Full Text »    PDF »
IgA Enhances NETosis and Release of Neutrophil Extracellular Traps by Polymorphonuclear Cells via Fc{alpha} Receptor I.
E. Aleyd, M. W. M. van Hout, S. H. Ganzevles, K. A. Hoeben, V. Everts, J. E. Bakema, and M. van Egmond (2014)
J. Immunol. 192, 2374-2383
   Abstract »    Full Text »    PDF »
Citrullination of autoantigens implicates NETosis in the induction of autoimmunity.
N. Dwivedi and M. Radic (2014)
Ann Rheum Dis 73, 483-491
   Abstract »    Full Text »    PDF »
Probiotic Lactobacillus rhamnosus Inhibits the Formation of Neutrophil Extracellular Traps.
L. Vong, R. J. Lorentz, A. Assa, M. Glogauer, and P. M. Sherman (2014)
J. Immunol. 192, 1870-1877
   Abstract »    Full Text »    PDF »
Streptococcus suis DNase SsnA contributes to degradation of neutrophil extracellular traps (NETs) and evasion of NET-mediated antimicrobial activity.
N. de Buhr, A. Neumann, N. Jerjomiceva, M. von Kockritz-Blickwede, and C. G. Baums (2014)
Microbiology 160, 385-395
   Abstract »    Full Text »    PDF »
VWF-mediated leukocyte recruitment with chromatin decondensation by PAD4 increases myocardial ischemia/reperfusion injury in mice.
A. S. Savchenko, J. I. Borissoff, K. Martinod, S. F. De Meyer, M. Gallant, L. Erpenbeck, A. Brill, Y. Wang, and D. D. Wagner (2014)
Blood 123, 141-148
   Abstract »    Full Text »    PDF »
Enhanced Formation and Disordered Regulation of NETs in Myeloperoxidase-ANCA-Associated Microscopic Polyangiitis.
D. Nakazawa, H. Shida, U. Tomaru, M. Yoshida, S. Nishio, T. Atsumi, and A. Ishizu (2014)
J. Am. Soc. Nephrol.
   Abstract »
Staphylococcus aureus Leukotoxin GH Promotes Formation of Neutrophil Extracellular Traps.
N. Malachowa, S. D. Kobayashi, B. Freedman, D. W. Dorward, and F. R. DeLeo (2013)
J. Immunol. 191, 6022-6029
   Abstract »    Full Text »    PDF »
Extracellular histones are essential effectors of C5aR- and C5L2-mediated tissue damage and inflammation in acute lung injury.
M. Bosmann, J. J. Grailer, R. Ruemmler, N. F. Russkamp, F. S. Zetoune, J. V. Sarma, T. J. Standiford, and P. A. Ward (2013)
FASEB J 27, 5010-5021
   Abstract »    Full Text »    PDF »
Immune-Mediated Pore-Forming Pathways Induce Cellular Hypercitrullination and Generate Citrullinated Autoantigens in Rheumatoid Arthritis.
V. Romero, J. Fert-Bober, P. A. Nigrovic, E. Darrah, U. J. Haque, D. M. Lee, J. van Eyk, A. Rosen, and F. Andrade (2013)
Science Translational Medicine 5, 209ra150
   Abstract »    Full Text »    PDF »
NETosis: how vital is it?.
B. G. Yipp and P. Kubes (2013)
Blood 122, 2784-2794
   Abstract »    Full Text »    PDF »
ROS production in phagocytes: why, when, and where?.
S. Dupre-Crochet, M. Erard, and O. Nusse (2013)
J. Leukoc. Biol. 94, 657-670
   Abstract »    Full Text »    PDF »
Macrophage Clearance of Neutrophil Extracellular Traps Is a Silent Process.
C. Farrera and B. Fadeel (2013)
J. Immunol. 191, 2647-2656
   Abstract »    Full Text »    PDF »
A leading role for the immune system in the pathophysiology of preeclampsia.
E. Laresgoiti-Servitje (2013)
J. Leukoc. Biol. 94, 247-257
   Abstract »    Full Text »    PDF »
Candida albicans escapes from mouse neutrophils.
D. Ermert, M. J. Niemiec, M. Rohm, A. Glenthoj, N. Borregaard, and C. F. Urban (2013)
J. Leukoc. Biol. 94, 223-236
   Abstract »    Full Text »    PDF »
Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy.
A. Itakura and O. J. T. McCarty (2013)
Am J Physiol Cell Physiol 305, C348-C354
   Abstract »    Full Text »    PDF »
Diverse novel functions of neutrophils in immunity, inflammation, and beyond.
A. Mocsai (2013)
J. Exp. Med. 210, 1283-1299
   Abstract »    Full Text »    PDF »
Mycobacterium tuberculosis Exploits Human Interferon {gamma} to Stimulate Macrophage Extracellular Trap Formation and Necrosis.
K.-W. Wong and W. R. Jacobs Jr (2013)
The Journal of Infectious Disease 208, 109-119
   Abstract »    Full Text »    PDF »
The cathelicidins LL-37 and rCRAMP are associated with pathogenic events of arthritis in humans and rats.
M. H. Hoffmann, H. Bruns, L. Backdahl, P. Neregard, B. Niederreiter, M. Herrmann, A. I. Catrina, B. Agerberth, and R. Holmdahl (2013)
Ann Rheum Dis 72, 1239-1248
   Abstract »    Full Text »    PDF »
Pseudogout-Associated Inflammatory Calcium Pyrophosphate Dihydrate Microcrystals Induce Formation of Neutrophil Extracellular Traps.
L. Pang, C. P. Hayes, K. Buac, D.-g. Yoo, and B. Rada (2013)
J. Immunol. 190, 6488-6500
   Abstract »    Full Text »    PDF »
Regulation of Neutrophil Extracellular Trap Formation by Anti-Inflammatory Drugs.
M. J. Lapponi, A. Carestia, V. I. Landoni, L. Rivadeneyra, J. Etulain, S. Negrotto, R. G. Pozner, and M. Schattner (2013)
J. Pharmacol. Exp. Ther. 345, 430-437
   Abstract »    Full Text »    PDF »
Zinc signals in neutrophil granulocytes are required for the formation of neutrophil extracellular traps.
R. Hasan, L. Rink, and H. Haase (2013)
Innate Immunity 19, 253-264
   Abstract »    Full Text »    PDF »
Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice.
K. Martinod, M. Demers, T. A. Fuchs, S. L. Wong, A. Brill, M. Gallant, J. Hu, Y. Wang, and D. D. Wagner (2013)
PNAS 110, 8674-8679
   Abstract »    Full Text »    PDF »
IL-17 Stimulates Differentiation of Human Anti-Inflammatory Macrophages and Phagocytosis of Apoptotic Neutrophils in Response to IL-10 and Glucocorticoids.
G. Zizzo and P. L. Cohen (2013)
J. Immunol. 190, 5237-5246
   Abstract »    Full Text »    PDF »
An Extracellular Matrix-Based Mechanism of Rapid Neutrophil Extracellular Trap Formation in Response to Candida albicans.
A. S. Byrd, X. M. O'Brien, C. M. Johnson, L. M. Lavigne, and J. S. Reichner (2013)
J. Immunol. 190, 4136-4148
   Abstract »    Full Text »    PDF »
NETs Are a Source of Citrullinated Autoantigens and Stimulate Inflammatory Responses in Rheumatoid Arthritis.
R. Khandpur, C. Carmona-Rivera, A. Vivekanandan-Giri, A. Gizinski, S. Yalavarthi, J. S. Knight, S. Friday, S. Li, R. M. Patel, V. Subramanian, et al. (2013)
Science Translational Medicine 5, 178ra40
   Abstract »    Full Text »    PDF »
Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans.
S. Ueki, R. C. N. Melo, I. Ghiran, L. A. Spencer, A. M. Dvorak, and P. F. Weller (2013)
Blood 121, 2074-2083
   Abstract »    Full Text »    PDF »
Neutrophil differentiation into a unique hybrid population exhibiting dual phenotype and functionality of neutrophils and dendritic cells.
H. Matsushima, S. Geng, R. Lu, T. Okamoto, Y. Yao, N. Mayuzumi, P. F. Kotol, B. J. Chojnacki, T. Miyazaki, R. L. Gallo, et al. (2013)
Blood 121, 1677-1689
   Abstract »    Full Text »    PDF »
NADPH Oxidase and Nrf2 Regulate Gastric Aspiration-Induced Inflammation and Acute Lung Injury.
B. A. Davidson, R. R. Vethanayagam, M. J. Grimm, B. A. Mullan, K. Raghavendran, T. S. Blackwell, M. L. Freeman, V. Ayyasamy, K. K. Singh, M. B. Sporn, et al. (2013)
J. Immunol. 190, 1714-1724
   Abstract »    Full Text »    PDF »
Identification of neutrophil extracellular traps in the blood of patients with systemic inflammatory response syndrome.
S. Hamaguchi, T. Hirose, Y. Akeda, N. Matsumoto, T. Irisawa, M. Seki, H. Hosotsubo, O. Tasaki, K. Oishi, T. Shimazu, et al. (2013)
Journal of International Medical Research 41, 162-168
   Abstract »    Full Text »    PDF »
Neutrophil Extracellular Trap-Associated Protein Activation of the NLRP3 Inflammasome Is Enhanced in Lupus Macrophages.
J. M. Kahlenberg, C. Carmona-Rivera, C. K. Smith, and M. J. Kaplan (2013)
J. Immunol. 190, 1217-1226
   Abstract »    Full Text »    PDF »
Role of YopK in Yersinia pseudotuberculosis Resistance against Polymorphonuclear Leukocyte Defense.
S. E. Thorslund, D. Ermert, A. Fahlgren, S. F. Erttmann, K. Nilsson, A. Hosseinzadeh, C. F. Urban, and M. Fallman (2013)
Infect. Immun. 81, 11-22
   Abstract »    Full Text »    PDF »
MUNC13-4 Protein Regulates the Oxidative Response and Is Essential for Phagosomal Maturation and Bacterial Killing in Neutrophils.
J. Monfregola, J. L. Johnson, M. M. Meijler, G. Napolitano, and S. D. Catz (2012)
J. Biol. Chem. 287, 44603-44618
   Abstract »    Full Text »    PDF »
Ocular Surface Extracellular DNA and Nuclease Activity Imbalance: A New Paradigm for Inflammation in Dry Eye Disease.
S. Sonawane, V. Khanolkar, A. Namavari, S. Chaudhary, S. Gandhi, S. Tibrewal, S. H. Jassim, B. Shaheen, J. Hallak, J. H. Horner, et al. (2012)
Invest. Ophthalmol. Vis. Sci. 53, 8253-8263
   Abstract »    Full Text »    PDF »
Neutrophil Extracellular Traps Entrap and Kill Borrelia burgdorferi Sensu Stricto Spirochetes and Are Not Affected by Ixodes ricinus Tick Saliva.
C. Menten-Dedoyart, C. Faccinetto, M. Golovchenko, I. Dupiereux, P.-B. Van Lerberghe, S. Dubois, C. Desmet, B. Elmoualij, F. Baron, N. Rudenko, et al. (2012)
J. Immunol. 189, 5393-5401
   Abstract »    Full Text »    PDF »
Endocytosis of soluble immune complexes leads to their clearance by Fc{gamma}RIIIB but induces neutrophil extracellular traps via Fc{gamma}RIIA in vivo.
K. Chen, H. Nishi, R. Travers, N. Tsuboi, K. Martinod, D. D. Wagner, R. Stan, K. Croce, and T. N. Mayadas (2012)
Blood 120, 4421-4431
   Abstract »    Full Text »    PDF »
Neutrophil Extracellular Traps Exhibit Antibacterial Activity against Burkholderia pseudomallei and Are Influenced by Bacterial and Host Factors.
D. Riyapa, S. Buddhisa, S. Korbsrisate, J. Cuccui, B. W. Wren, M. P. Stevens, M. Ato, and G. Lertmemongkolchai (2012)
Infect. Immun. 80, 3921-3929
   Abstract »    Full Text »    PDF »
A SerpinB1 Regulatory Mechanism Is Essential for Restricting Neutrophil Extracellular Trap Generation.
K. Farley, J. M. Stolley, P. Zhao, J. Cooley, and E. Remold-O'Donnell (2012)
J. Immunol. 189, 4574-4581
   Abstract »    Full Text »    PDF »
NADPH Oxidase Inhibits the Pathogenesis of Systemic Lupus Erythematosus.
A. M. Campbell, M. Kashgarian, and M. J. Shlomchik (2012)
Science Translational Medicine 4, 157ra141
   Abstract »    Full Text »    PDF »
Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmunity.
S. Sangaletti, C. Tripodo, C. Chiodoni, C. Guarnotta, B. Cappetti, P. Casalini, S. Piconese, M. Parenza, C. Guiducci, C. Vitali, et al. (2012)
Blood 120, 3007-3018
   Abstract »    Full Text »    PDF »
Mammalian target of rapamycin regulates neutrophil extracellular trap formation via induction of hypoxia-inducible factor 1 {alpha}.
A. M. McInturff, M. J. Cody, E. A. Elliott, J. W. Glenn, J. W. Rowley, M. T. Rondina, and C. C. Yost (2012)
Blood 120, 3118-3125
   Abstract »    Full Text »    PDF »
Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus.
H. Parker, M. Dragunow, M. B. Hampton, A. J. Kettle, and C. C. Winterbourn (2012)
J. Leukoc. Biol. 92, 841-849
   Abstract »    Full Text »    PDF »
Neutrophil Extracellular Traps: Double-Edged Swords of Innate Immunity.
M. J. Kaplan and M. Radic (2012)
J. Immunol. 189, 2689-2695
   Abstract »    Full Text »    PDF »
Neutrophil extracellular traps: Is immunity the second function of chromatin?.
V. Brinkmann and A. Zychlinsky (2012)
J. Cell Biol. 198, 773-783
   Abstract »    Full Text »    PDF »
Differential Interaction of the Two Related Fungal Species Candida albicans and Candida dubliniensis with Human Neutrophils.
E. Svobodova, P. Staib, J. Losse, F. Hennicke, D. Barz, and M. Jozsi (2012)
J. Immunol. 189, 2502-2511
   Abstract »    Full Text »    PDF »
Secretory Leukocyte Proteinase Inhibitor-Competent DNA Deposits Are Potent Stimulators of Plasmacytoid Dendritic Cells: Implication for Psoriasis.
J. Skrzeczynska-Moncznik, A. Wlodarczyk, K. Zabieglo, M. Kapinska-Mrowiecka, E. Marewicz, A. Dubin, J. Potempa, and J. Cichy (2012)
J. Immunol. 189, 1611-1617
   Abstract »    Full Text »    PDF »
Circulating DNA and myeloperoxidase indicate disease activity in patients with thrombotic microangiopathies.
T. A. Fuchs, J. A. Kremer Hovinga, D. Schatzberg, D. D. Wagner, and B. Lammle (2012)
Blood 120, 1157-1164
   Abstract »    Full Text »    PDF »
Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis.
M. Demers, D. S. Krause, D. Schatzberg, K. Martinod, J. R. Voorhees, T. A. Fuchs, D. T. Scadden, and D. D. Wagner (2012)
PNAS 109, 13076-13081
   Abstract »    Full Text »    PDF »
Neutrophil Extracellular Trap (NET) Impact on Deep Vein Thrombosis.
T. A. Fuchs, A. Brill, and D. D. Wagner (2012)
Arterioscler Thromb Vasc Biol 32, 1777-1783
   Abstract »    Full Text »    PDF »
Neutrophil Cerebrovascular Transmigration Triggers Rapid Neurotoxicity through Release of Proteases Associated with Decondensed DNA.
C. Allen, P. Thornton, A. Denes, B. W. McColl, A. Pierozynski, M. Monestier, E. Pinteaux, N. J. Rothwell, and S. M. Allan (2012)
J. Immunol. 189, 381-392
   Abstract »    Full Text »    PDF »
Extracellular DNA traps are associated with the pathogenesis of TRALI in humans and mice.
G. M. Thomas, C. Carbo, B. R. Curtis, K. Martinod, I. B. Mazo, D. Schatzberg, S. M. Cifuni, T. A. Fuchs, U. H. von Andrian, J. H. Hartwig, et al. (2012)
Blood 119, 6335-6343
   Abstract »    Full Text »    PDF »
Mannheimia haemolytica and Its Leukotoxin Cause Macrophage Extracellular Trap Formation by Bovine Macrophages.
N. A. Aulik, K. M. Hellenbrand, and C. J. Czuprynski (2012)
Infect. Immun. 80, 1923-1933
   Abstract »    Full Text »    PDF »
Afa/Dr Diffusely Adhering Escherichia coli Strain C1845 Induces Neutrophil Extracellular Traps That Kill Bacteria and Damage Human Enterocyte-Like Cells.
V. Marin-Esteban, I. Turbica, G. Dufour, N. Semiramoth, A. Gleizes, R. Gorges, I. Beau, A. L. Servin, V. Lievin-Le Moal, C. Sandre, et al. (2012)
Infect. Immun. 80, 1891-1899
   Abstract »    Full Text »    PDF »
Nature and Dynamics of Nucleosome Release from Neoplastic and Non-neoplastic Cells.
Anticancer Res 32, 2179-2183
   Abstract »    Full Text »    PDF »
T Lymphocyte Priming by Neutrophil Extracellular Traps Links Innate and Adaptive Immune Responses.
K. Tillack, P. Breiden, R. Martin, and M. Sospedra (2012)
J. Immunol. 188, 3150-3159
   Abstract »    Full Text »    PDF »
{alpha}-Enolase of Streptococcus pneumoniae Induces Formation of Neutrophil Extracellular Traps.
Y. Mori, M. Yamaguchi, Y. Terao, S. Hamada, T. Ooshima, and S. Kawabata (2012)
J. Biol. Chem. 287, 10472-10481
   Abstract »    Full Text »    PDF »
Editorial: Nyet to NETs? A pause for healthy skepticism.
W. M. Nauseef (2012)
J. Leukoc. Biol. 91, 353-355
   Full Text »    PDF »
Innate Immunity against Granulibacter bethesdensis, an Emerging Gram-Negative Bacterial Pathogen.
K. A. Zarember, K. R. Marshall-Batty, A. R. Cruz, J. Chu, M. E. Fenster, A. R. Shoffner, L. S. Rogge, A. R. Whitney, M. Czapiga, H. H. Song, et al. (2012)
Infect. Immun. 80, 975-981
   Abstract »    Full Text »    PDF »
Myeloperoxidase associated with neutrophil extracellular traps is active and mediates bacterial killing in the presence of hydrogen peroxide.
H. Parker, A. M. Albrett, A. J. Kettle, and C. C. Winterbourn (2012)
J. Leukoc. Biol. 91, 369-376
   Abstract »    Full Text »    PDF »
Glutathione Reductase Facilitates Host Defense by Sustaining Phagocytic Oxidative Burst and Promoting the Development of Neutrophil Extracellular Traps.
J. Yan, X. Meng, L. M. Wancket, K. Lintner, L. D. Nelin, B. Chen, K. P. Francis, C. V. Smith, L. K. Rogers, and Y. Liu (2012)
J. Immunol. 188, 2316-2327
   Abstract »    Full Text »    PDF »
Killing by neutrophil extracellular traps: fact or folklore?.
R. Menegazzi, E. Decleva, and P. Dri (2012)
Blood 119, 1214-1216
   Abstract »    Full Text »    PDF »
Toxoplasma gondii Triggers Release of Human and Mouse Neutrophil Extracellular Traps.
D. S. Abi Abdallah, C. Lin, C. J. Ball, M. R. King, G. E. Duhamel, and E. Y. Denkers (2012)
Infect. Immun. 80, 768-777
   Abstract »    Full Text »    PDF »
DNA-PK is a DNA sensor for IRF-3-dependent innate immunity.
B. J. Ferguson, D. S. Mansur, N. E. Peters, H. Ren, and G. L. Smith (2012)
eLife Sci 1, e00047
   Abstract »    Full Text »    PDF »
Rac2 is required for the formation of neutrophil extracellular traps.
M. B. H. Lim, J. W. P. Kuiper, A. Katchky, H. Goldberg, and M. Glogauer (2011)
J. Leukoc. Biol. 90, 771-776
   Abstract »    Full Text »    PDF »
Innate Immune Collectin Surfactant Protein D Simultaneously Binds Both Neutrophil Extracellular Traps and Carbohydrate Ligands and Promotes Bacterial Trapping.
D. N. Douda, R. Jackson, H. Grasemann, and N. Palaniyar (2011)
J. Immunol. 187, 1856-1865
   Abstract »    Full Text »    PDF »
Mast Cells and Neutrophils Release IL-17 through Extracellular Trap Formation in Psoriasis.
A. M. Lin, C. J. Rubin, R. Khandpur, J. Y. Wang, M. Riblett, S. Yalavarthi, E. C. Villanueva, P. Shah, M. J. Kaplan, and A. T. Bruce (2011)
J. Immunol. 187, 490-500
   Abstract »    Full Text »    PDF »
Netting Neutrophils Induce Endothelial Damage, Infiltrate Tissues, and Expose Immunostimulatory Molecules in Systemic Lupus Erythematosus.
E. Villanueva, S. Yalavarthi, C. C. Berthier, J. B. Hodgin, R. Khandpur, A. M. Lin, C. J. Rubin, W. Zhao, S. H. Olsen, M. Klinker, et al. (2011)
J. Immunol. 187, 538-552
   Abstract »    Full Text »    PDF »
Inflammation-Associated Autophagy-Related Programmed Necrotic Death of Human Neutrophils Characterized by Organelle Fusion Events.
C. C. Mihalache, S. Yousefi, S. Conus, P. M. Villiger, E. M. Schneider, and H.-U. Simon (2011)
J. Immunol. 186, 6532-6542
   Abstract »    Full Text »    PDF »
Cellular localization of nuclear antigen during neutrophil apoptosis: mechanism for autoantigen exposure?.
A. Midgley and M. Beresford (2011)
Lupus 20, 641-646
   Abstract »    Full Text »    PDF »
Short-Term Treadmill Running as a Model for Studying Cell-Free DNA Kinetics In Vivo.
T. Beiter, A. Fragasso, J. Hudemann, A. M. Niess, and P. Simon (2011)
Clin. Chem. 57, 633-636
   Abstract »    Full Text »    PDF »
Role of NADPH oxidase in host defense against aspergillosis.
M. J. Grimm, R. Robert Vethanayagam, N. G. Almyroudis, D. Lewandowski, N. Rall, T. S. Blackwell, and B. H. Segal (2011)
Med Mycol 49, S144-S149
   Abstract »    Full Text »    PDF »
Neutrophils Activate Plasmacytoid Dendritic Cells by Releasing Self-DNA-Peptide Complexes in Systemic Lupus Erythematosus.
R. Lande, D. Ganguly, V. Facchinetti, L. Frasca, C. Conrad, J. Gregorio, S. Meller, G. Chamilos, R. Sebasigari, V. Riccieri, et al. (2011)
Science Translational Medicine 3, 73ra19
   Abstract »    Full Text »    PDF »
Netting Neutrophils Are Major Inducers of Type I IFN Production in Pediatric Systemic Lupus Erythematosus.
G. S. Garcia-Romo, S. Caielli, B. Vega, J. Connolly, F. Allantaz, Z. Xu, M. Punaro, J. Baisch, C. Guiducci, R. L. Coffman, et al. (2011)
Science Translational Medicine 3, 73ra20
   Abstract »    Full Text »    PDF »
Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity.
K. D. Metzler, T. A. Fuchs, W. M. Nauseef, D. Reumaux, J. Roesler, I. Schulze, V. Wahn, V. Papayannopoulos, and A. Zychlinsky (2011)
Blood 117, 953-959
   Abstract »    Full Text »    PDF »
Neutrophils Require SHP1 To Regulate IL-1{beta} Production and Prevent Inflammatory Skin Disease.
B. A. Croker, R. S. Lewis, J. J. Babon, J. D. Mintern, D. E. Jenne, D. Metcalf, J.-G. Zhang, L. H. Cengia, J. A. O'Donnell, and A. W. Roberts (2011)
J. Immunol. 186, 1131-1139
   Abstract »    Full Text »    PDF »
Nontypeable Haemophilus influenzae Initiates Formation of Neutrophil Extracellular Traps.
R. A. Juneau, B. Pang, K. E. D. Weimer, C. E. Armbruster, and W. E. Swords (2011)
Infect. Immun. 79, 431-438
   Abstract »    Full Text »    PDF »
Autoimmune skin inflammation is dependent on plasmacytoid dendritic cell activation by nucleic acids via TLR7 and TLR9.
C. Guiducci, C. Tripodo, M. Gong, S. Sangaletti, M. P. Colombo, R. L. Coffman, and F. J. Barrat (2010)
J. Exp. Med. 207, 2931-2942
   Abstract »    Full Text »    PDF »
A Novel Mechanism of Rapid Nuclear Neutrophil Extracellular Trap Formation in Response to Staphylococcus aureus.
F. H. Pilsczek, D. Salina, K. K. H. Poon, C. Fahey, B. G. Yipp, C. D. Sibley, S. M. Robbins, F. H. Y. Green, M. G. Surette, M. Sugai, et al. (2010)
J. Immunol. 185, 7413-7425
   Abstract »    Full Text »    PDF »
Aluminum adjuvants elicit fibrin-dependent extracellular traps in vivo.
M. W. Munks, A. S. McKee, M. K. MacLeod, R. L. Powell, J. L. Degen, N. A. Reisdorph, J. W. Kappler, and P. Marrack (2010)
Blood 116, 5191-5199
   Abstract »    Full Text »    PDF »
Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps.
V. Papayannopoulos, K. D. Metzler, A. Hakkim, and A. Zychlinsky (2010)
J. Cell Biol. 191, 677-691
   Abstract »    Full Text »    PDF »
Mannheimia haemolytica and Its Leukotoxin Cause Neutrophil Extracellular Trap Formation by Bovine Neutrophils.
N. A. Aulik, K. M. Hellenbrand, H. Klos, and C. J. Czuprynski (2010)
Infect. Immun. 78, 4454-4466
   Abstract »    Full Text »    PDF »
Leishmania donovani Promastigotes Evade the Antimicrobial Activity of Neutrophil Extracellular Traps.
C. Gabriel, W. R. McMaster, D. Girard, and A. Descoteaux (2010)
J. Immunol. 185, 4319-4327
   Abstract »    Full Text »    PDF »
Tryptophan/kynurenine metabolism in human leukocytes is independent of superoxide and is fully maintained in chronic granulomatous disease.
S. S. De Ravin, K. A. Zarember, D. Long-Priel, K. C. Chan, S. D. Fox, J. I. Gallin, D. B. Kuhns, and H. L. Malech (2010)
Blood 116, 1755-1760
   Abstract »    Full Text »    PDF »
Extracellular DNA traps promote thrombosis.
T. A. Fuchs, A. Brill, D. Duerschmied, D. Schatzberg, M. Monestier, D. D. Myers Jr., S. K. Wrobleski, T. W. Wakefield, J. H. Hartwig, and D. D. Wagner (2010)
PNAS 107, 15880-15885
   Abstract »    Full Text »    PDF »
Distinct Cell Death Programs in Monocytes Regulate Innate Responses Following Challenge with Common Causes of Invasive Bacterial Disease.
S. J. Webster, M. Daigneault, M. A. Bewley, J. A. Preston, H. M. Marriott, S. R. Walmsley, R. C. Read, M. K. B. Whyte, and D. H. Dockrell (2010)
J. Immunol. 185, 2968-2979
   Abstract »    Full Text »    PDF »
PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps.
P. Li, M. Li, M. R. Lindberg, M. J. Kennett, N. Xiong, and Y. Wang (2010)
J. Exp. Med. 207, 1853-1862
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882