Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Cell Biol. 177 (3): 387-392

Copyright © 2007 by the Rockefeller University Press.


LKB1 and AMPK maintain epithelial cell polarity under energetic stress

Vincent Mirouse1,2, Lance L. Swick3, Nevzat Kazgan3, Daniel St Johnston1,2, , and Jay E. Brenman3

1 The Gurdon Institute and the 2 Department of Genetics, University of Cambridge, Cambridge CB2 1QN, England, UK
3 Cell and Developmental Biology and Neuroscience Center, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC 27599

Correspondence to J. Brenman: brenman{at}

Abstract: LKB1 is mutated in both familial and spontaneous tumors, and acts as a master kinase that activates the PAR-1 polarity kinase and the adenosine 5'monophosphate–activated kinase (AMPK). This has led to the hypothesis that LKB1 acts as a tumor suppressor because it is required to maintain cell polarity and growth control through PAR-1 and AMPK, respectively. However, the genetic analysis of LKB1–AMPK signaling in vertebrates has been complicated by the existence of multiple redundant AMPK subunits. We describe the identification of mutations in the single Drosophila melanogaster AMPK catalytic subunit AMPK{alpha}. Surprisingly, ampk{alpha} mutant epithelial cells lose their polarity and overproliferate under energetic stress. LKB1 is required in vivo for AMPK activation, and lkb1 mutations cause similar energetic stress–dependent phenotypes to ampk{alpha} mutations. Furthermore, lkb1 phenotypes are rescued by a phosphomimetic version of AMPK{alpha}. Thus, LKB1 signals through AMPK to coordinate epithelial polarity and proliferation with cellular energy status, and this might underlie the tumor suppressor function of LKB1.

V. Mirouse and L.L. Swick contributed equally to this paper.

Abbreviations used in this paper: AMPK, AMP-activated kinase; aPKC, atypical PKC; MARK, microtubule affinity-regulating kinase.

Damage to the Drosophila follicle cell epithelium produces "false clones" with apparent polarity phenotypes.
T. Haack, D. T. Bergstralh, and D. St Johnston (2013)
Biology Open 2, 1313-1320
   Abstract »    Full Text »    PDF »
Adenosine Monophosphate-Activated Protein Kinase-{alpha}2 Deficiency Promotes Vascular Smooth Muscle Cell Migration via S-Phase Kinase-Associated Protein 2 Upregulation and E-Cadherin Downregulation.
P. Song, Y. Zhou, K. A. Coughlan, X. Dai, H. Xu, B. Viollet, and M.-H. Zou (2013)
Arterioscler Thromb Vasc Biol 33, 2800-2809
   Abstract »    Full Text »    PDF »
Breaking the epithelial polarity barrier in cancer: the strange case of LKB1/PAR-4.
J. I. Partanen, T. A. Tervonen, and J. Klefstrom (2013)
Phil Trans R Soc B 368, 20130111
   Abstract »    Full Text »    PDF »
LKB1 Represses Focal Adhesion Kinase (FAK) Signaling via a FAK-LKB1 Complex to Regulate FAK Site Maturation and Directional Persistence.
E. R. Kline, J. Shupe, M. Gilbert-Ross, W. Zhou, and A. I. Marcus (2013)
J. Biol. Chem. 288, 17663-17674
   Abstract »    Full Text »    PDF »
AMPK phosphorylates GBF1 for mitotic Golgi disassembly.
L. Mao, N. Li, Y. Guo, X. Xu, L. Gao, Y. Xu, L. Zhou, and W. Liu (2013)
J. Cell Sci. 126, 1498-1505
   Abstract »    Full Text »    PDF »
Caenorhabditis elegans PIG-1/MELK Acts in a Conserved PAR-4/LKB1 Polarity Pathway to Promote Asymmetric Neuroblast Divisions.
S.-C. Chien, E.-M. Brinkmann, J. Teuliere, and G. Garriga (2013)
Genetics 193, 897-909
   Abstract »    Full Text »    PDF »
Lkb1 regulates organogenesis and early oncogenesis along AMPK-dependent and -independent pathways.
B. Lo, G. Strasser, M. Sagolla, C. D. Austin, M. Junttila, and I. Mellman (2012)
J. Cell Biol. 199, 1117-1130
   Abstract »    Full Text »    PDF »
Cell confinement controls centrosome positioning and lumen initiation during epithelial morphogenesis.
A. E. Rodriguez-Fraticelli, M. Auzan, M. A. Alonso, M. Bornens, and F. Martin-Belmonte (2012)
J. Cell Biol. 198, 1011-1023
   Abstract »    Full Text »    PDF »
Tumor suppressor function of Liver kinase B1 (Lkb1) is linked to regulation of epithelial integrity.
J. I. Partanen, T. A. Tervonen, M. Myllynen, E. Lind, M. Imai, P. Katajisto, G. J. P. Dijkgraaf, P. E. Kovanen, T. P. Makela, Z. Werb, et al. (2012)
PNAS 109, E388-E397
   Abstract »    Full Text »    PDF »
AMPK directly inhibits NDPK through a phosphoserine switch to maintain cellular homeostasis.
R. U. Onyenwoke, L. J. Forsberg, L. Liu, T. Williams, O. Alzate, and J. E. Brenman (2012)
Mol. Biol. Cell 23, 381-389
   Abstract »    Full Text »    PDF »
Preactivation of AMPK by metformin may ameliorate the epithelial cell damage caused by renal ischemia.
P. W. Seo-Mayer, G. Thulin, L. Zhang, D. S. Alves, T. Ardito, M. Kashgarian, and M. J. Caplan (2011)
Am J Physiol Renal Physiol 301, F1346-F1357
   Abstract »    Full Text »    PDF »
AMP-activated protein kinase--an energy sensor that regulates all aspects of cell function.
D. G. Hardie (2011)
Genes & Dev. 25, 1895-1908
   Abstract »    Full Text »    PDF »
LKB1 regulates TCR-mediated PLC{gamma}1 activation and thymocyte positive selection.
Y. Cao, H. Li, H. Liu, M. Zhang, Z. Hua, H. Ji, and X. Liu (2011)
EMBO J. 30, 2083-2093
   Abstract »    Full Text »    PDF »
AMP-activated Protein Kinase (AMPK) Activation and Glycogen Synthase Kinase-3{beta} (GSK-3{beta}) Inhibition Induce Ca2+-independent Deposition of Tight Junction Components at the Plasma Membrane.
L. Zhang, F. Jouret, J. Rinehart, J. Sfakianos, I. Mellman, R. P. Lifton, L. H. Young, and M. J. Caplan (2011)
J. Biol. Chem. 286, 16879-16890
   Abstract »    Full Text »    PDF »
AMP-activated protein kinase (AMPK) activity is not required for neuronal development but regulates axogenesis during metabolic stress.
T. Williams, J. Courchet, B. Viollet, J. E. Brenman, and F. Polleux (2011)
PNAS 108, 5849-5854
   Abstract »    Full Text »    PDF »
The serine-threonine kinase LKB1 is essential for survival under energetic stress in zebrafish.
Y. U. van der Velden, L. Wang, J. Zevenhoven, E. van Rooijen, M. van Lohuizen, R. H. Giles, H. Clevers, and A.-P. G. Haramis (2011)
PNAS 108, 4358-4363
   Abstract »    Full Text »    PDF »
Elaborating polarity: PAR proteins and the cytoskeleton.
J. Nance and J. A. Zallen (2011)
Development 138, 799-809
   Abstract »    Full Text »    PDF »
Regulation of bile canalicular network formation and maintenance by AMP-activated protein kinase and LKB1.
D. Fu, Y. Wakabayashi, Y. Ido, J. Lippincott-Schwartz, and I. M. Arias (2010)
J. Cell Sci. 123, 3294-3302
   Abstract »    Full Text »    PDF »
Identification of a Nuclear Export Signal in the Catalytic Subunit of AMP-activated Protein Kinase.
N. Kazgan, T. Williams, L. J. Forsberg, and J. E. Brenman (2010)
Mol. Biol. Cell 21, 3433-3442
   Abstract »    Full Text »    PDF »
Interactome Mapping of the Phosphatidylinositol 3-Kinase-Mammalian Target of Rapamycin Pathway Identifies Deformed Epidermal Autoregulatory Factor-1 as a New Glycogen Synthase Kinase-3 Interactor.
F. Pilot-Storck, E. Chopin, J.-F. Rual, A. Baudot, P. Dobrokhotov, M. Robinson-Rechavi, C. Brun, M. E. Cusick, D. E. Hill, L. Schaeffer, et al. (2010)
Mol. Cell. Proteomics 9, 1578-1593
   Abstract »    Full Text »    PDF »
Cdx2 regulates endo-lysosomal function and epithelial cell polarity.
N. Gao and K. H. Kaestner (2010)
Genes & Dev. 24, 1295-1305
   Abstract »    Full Text »    PDF »
Differential requirements for STRAD in LKB1-dependent functions in C. elegans.
P. Narbonne, V. Hyenne, S. Li, J.-C. Labbe, and R. Roy (2010)
Development 137, 661-670
   Abstract »    Full Text »    PDF »
AMP-Activated Protein Kinase (AMPK) Molecular Crossroad for Metabolic Control and Survival of Neurons.
M. R. Spasic, P. Callaerts, and K. K. Norga (2009)
Neuroscientist 15, 309-316
   Abstract »    PDF »
LKB1 and AMPK Family Signaling: The Intimate Link Between Cell Polarity and Energy Metabolism.
M. Jansen, J. P. ten Klooster, G. J. Offerhaus, and H. Clevers (2009)
Physiol Rev 89, 777-798
   Abstract »    Full Text »    PDF »
LKB1 regulates polarity remodeling and adherens junction formation in the Drosophila eye.
N. Amin, A. Khan, D. St. Johnston, I. Tomlinson, S. Martin, J. Brenman, and H. McNeill (2009)
PNAS 106, 8941-8946
   Abstract »    Full Text »    PDF »
Activation of NAD(P)H:Quinone Oxidoreductase 1 Prevents Arterial Restenosis by Suppressing Vascular Smooth Muscle Cell Proliferation.
S.-Y. Kim, N. H. Jeoung, C. J. Oh, Y.-K. Choi, H.-J. Lee, H.-J. Kim, J.-Y. Kim, J. H. Hwang, S. Tadi, Y.-H. Yim, et al. (2009)
Circ. Res. 104, 842-850
   Abstract »    Full Text »    PDF »
Energy Homeostasis and Cancer Prevention: The AMP-Activated Protein Kinase.
J. R. Fay, V. Steele, and J. A. Crowell (2009)
Cancer Prevention Research 2, 301-309
   Abstract »    Full Text »    PDF »
The molecular mechanisms that underlie the tumor suppressor function of LKB1.
D. Fan, C. Ma, and H. Zhang (2009)
Acta Biochim Biophys Sin 41, 97-107
   Abstract »    Full Text »    PDF »
Expression and activity of the 5'-adenosine monophosphate-activated protein kinase pathway in selected tissues during chicken embryonic development.
M. Proszkowiec-Weglarz and M. P. Richards (2009)
Poultry Science 88, 159-178
   Abstract »    Full Text »    PDF »
Drosophila alicorn Is a Neuronal Maintenance Factor Protecting against Activity-Induced Retinal Degeneration.
M. R. Spasic, P. Callaerts, and K. K. Norga (2008)
J. Neurosci. 28, 6419-6429
   Abstract »    Full Text »    PDF »
The Caenorhabditis elegans AMP-activated Protein Kinase AAK-2 Is Phosphorylated by LKB1 and Is Required for Resistance to Oxidative Stress and for Normal Motility and Foraging Behavior.
H. Lee, J. S. Cho, N. Lambacher, J. Lee, S.-J. Lee, T. H. Lee, A. Gartner, and H.-S. Koo (2008)
J. Biol. Chem. 283, 14988-14993
   Abstract »    Full Text »    PDF »
Cell polarity and cancer - cell and tissue polarity as a non-canonical tumor suppressor.
M. Lee and V. Vasioukhin (2008)
J. Cell Sci. 121, 1141-1150
   Abstract »    Full Text »    PDF »
Pancreatic Lkb1 Deletion Leads to Acinar Polarity Defects and Cystic Neoplasms.
A. F. Hezel, S. Gurumurthy, Z. Granot, A. Swisa, G. C. Chu, G. Bailey, Y. Dor, N. Bardeesy, and R. A. DePinho (2008)
Mol. Cell. Biol. 28, 2414-2425
   Abstract »    Full Text »    PDF »
The Tumor Suppressor LKB1 Regulates Lung Cancer Cell Polarity by Mediating cdc42 Recruitment and Activity.
S. Zhang, K. Schafer-Hales, F. R. Khuri, W. Zhou, P. M. Vertino, and A. I. Marcus (2008)
Cancer Res. 68, 740-748
   Abstract »    Full Text »    PDF »
Loss of Lkb1 Provokes Highly Invasive Endometrial Adenocarcinomas.
C. M. Contreras, S. Gurumurthy, J. M. Haynie, L. J. Shirley, E. A. Akbay, S. N. Wingo, J. O. Schorge, R. R. Broaddus, K.-K. Wong, N. Bardeesy, et al. (2008)
Cancer Res. 68, 759-766
   Abstract »    Full Text »    PDF »
LKB1 Deficiency Sensitizes Mice to Carcinogen-Induced Tumorigenesis.
S. Gurumurthy, A. F. Hezel, J. H. Berger, M. W. Bosenberg, and N. Bardeesy (2008)
Cancer Res. 68, 55-63
   Abstract »    Full Text »    PDF »
Complex N-Glycan and Metabolic Control in Tumor Cells.
R. Mendelsohn, P. Cheung, L. Berger, E. Partridge, K. Lau, A. Datti, J. Pawling, and J. W. Dennis (2007)
Cancer Res. 67, 9771-9780
   Abstract »    Full Text »    PDF »
Dialogue Between LKB1 and AMPK: A Hot Topic at the Cellular Pole.
C. Forcet and M. Billaud (2007)
Sci. STKE 2007, pe51
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882