Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Cell Biol. 181 (3): 551-565

Copyright © 2008 by the Rockefeller University Press.


Prion protein attenuates excitotoxicity by inhibiting NMDA receptors

Houman Khosravani1, Yunfeng Zhang1, Shigeki Tsutsui2, Shahid Hameed1, Christophe Altier1, Jawed Hamid1, Lina Chen1, Michelle Villemaire2, Zenobia Ali2, Frank R. Jirik2, , and Gerald W. Zamponi1

1 Department of Physiology and Biophysics, Hotchkiss Brain Institute, and 2 Department of Biochemistry and Molecular Biology, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary T2N4N1, Canada

Correspondence to Gerald W. Zamponi: zamponi{at}

Abstract: It is well established that misfolded forms of cellular prion protein (PrP [PrPC]) are crucial in the genesis and progression of transmissible spongiform encephalitis, whereas the function of native PrPC remains incompletely understood. To determine the physiological role of PrPC, we examine the neurophysiological properties of hippocampal neurons isolated from PrP-null mice. We show that PrP-null mouse neurons exhibit enhanced and drastically prolonged N-methyl-D-aspartate (NMDA)–evoked currents as a result of a functional upregulation of NMDA receptors (NMDARs) containing NR2D subunits. These effects are phenocopied by RNA interference and are rescued upon the overexpression of exogenous PrPC. The enhanced NMDAR activity results in an increase in neuronal excitability as well as enhanced glutamate excitotoxicity both in vitro and in vivo. Thus, native PrPC mediates an important neuroprotective role by virtue of its ability to inhibit NR2D subunits.

Abbreviations used in this paper: aCSF, artificial cerebrospinal fluid; APV, aminophosphonovaleric acid; DIV, day in vitro; fEPSP, field excitatory postsynaptic potential; GABA, {gamma}-aminobutyric acid; mEPSC, miniature excitatory postsynaptic current; mIPSC, miniature inhibitory postsynaptic current; NMDA, N-methyl-D-aspartate; NMDAR, NMDA receptor; PrP, prion protein; TSE, transmissible spongiform encephalopathy; TTX, tetrodotoxin; WT, wild type.

© 2008 Khosravani et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at

Selective vulnerability to neurodegenerative disease: the curious case of Prion Protein.
W. S. Jackson (2014)
Dis. Model. Mech. 7, 21-29
   Abstract »    Full Text »    PDF »
Prion protein: structural features and related toxicity.
P. P. Hu and C. Z. Huang (2013)
Acta Biochim Biophys Sin 45, 435-441
   Abstract »    Full Text »    PDF »
The cellular prion protein traps Alzheimer's A{beta} in an oligomeric form and disassembles amyloid fibers.
N. D. Younan, C. J. Sarell, P. Davies, D. R. Brown, and J. H. Viles (2013)
FASEB J 27, 1847-1858
   Abstract »    Full Text »    PDF »
A Mutant Prion Protein Sensitizes Neurons to Glutamate-Induced Excitotoxicity.
E. Biasini, U. Unterberger, I. H. Solomon, T. Massignan, A. Senatore, H. Bian, T. Voigtlaender, F. P. Bowman, V. Bonetto, R. Chiesa, et al. (2013)
J. Neurosci. 33, 2408-2418
   Abstract »    Full Text »    PDF »
The Heat Shock Response Is Modulated by and Interferes with Toxic Effects of Scrapie Prion Protein and Amyloid {beta}.
U. K. Resenberger, V. Muller, L. M. Munter, M. Baier, G. Multhaup, M. R. Wilson, K. F. Winklhofer, and J. Tatzelt (2012)
J. Biol. Chem. 287, 43765-43776
   Abstract »    Full Text »    PDF »
Copper-dependent regulation of NMDA receptors by cellular prion protein: implications for neurodegenerative disorders.
P. K. Stys, H. You, and G. W. Zamponi (2012)
J. Physiol. 590, 1357-1368
   Abstract »    Full Text »    PDF »
Cellular prion protein is essential for oligomeric amyloid-{beta}-induced neuronal cell death.
W. Kudo, H.-P. Lee, W.-Q. Zou, X. Wang, G. Perry, X. Zhu, M. A. Smith, R. B. Petersen, and H.-g. Lee (2012)
Hum. Mol. Genet. 21, 1138-1144
   Abstract »    Full Text »    PDF »
Calpain-mediated Degradation of Myocyte Enhancer Factor 2D Contributes to Excitotoxicity by Activation of Extrasynaptic N-Methyl-D-aspartate Receptors.
G. Wei, Y. Yin, W. Li, H. Bito, H. She, and Z. Mao (2012)
J. Biol. Chem. 287, 5797-5805
   Abstract »    Full Text »    PDF »
A{beta} neurotoxicity depends on interactions between copper ions, prion protein, and N-methyl-D-aspartate receptors.
H. You, S. Tsutsui, S. Hameed, T. J. Kannanayakal, L. Chen, P. Xia, J. D. T. Engbers, S. A. Lipton, P. K. Stys, and G. W. Zamponi (2012)
PNAS 109, 1737-1742
   Abstract »    Full Text »    PDF »
Prion Protein Promotes Growth Cone Development through Reggie/Flotillin-Dependent N-Cadherin Trafficking.
V. Bodrikov, G. P. Solis, and C. A. O. Stuermer (2011)
J. Neurosci. 31, 18013-18025
   Abstract »    Full Text »    PDF »
Neuroprotection against Traumatic Brain Injury by a Peptide Derived from the Collapsin Response Mediator Protein 2 (CRMP2).
J. M. Brittain, L. Chen, S. M. Wilson, T. Brustovetsky, X. Gao, N. M. Ashpole, A. I. Molosh, H. You, A. Hudmon, A. Shekhar, et al. (2011)
J. Biol. Chem. 286, 37778-37792
   Abstract »    Full Text »    PDF »
Neuroprotective role of PrPC against kainate-induced epileptic seizures and cell death depends on the modulation of JNK3 activation by GluR6/7-PSD-95 binding.
P. Carulla, A. Bribian, A. Rangel, R. Gavin, I. Ferrer, C. Caelles, J. A. del Rio, and F. Llorens (2011)
Mol. Biol. Cell 22, 3041-3054
   Abstract »    Full Text »    PDF »
The cellular prion protein mediates neurotoxic signalling of {beta}-sheet-rich conformers independent of prion replication.
U. K. Resenberger, A. Harmeier, A. C. Woerner, J. L. Goodman, V. Muller, R. Krishnan, R. M. Vabulas, H. A. Kretzschmar, S. Lindquist, F. U. Hartl, et al. (2011)
EMBO J. 30, 2057-2070
   Abstract »    Full Text »    PDF »
An N-terminal Polybasic Domain and Cell Surface Localization Are Required for Mutant Prion Protein Toxicity.
I. H. Solomon, N. Khatri, E. Biasini, T. Massignan, J. E. Huettner, and D. A. Harris (2011)
J. Biol. Chem. 286, 14724-14736
   Abstract »    Full Text »    PDF »
Cellular Prion Protein Promotes Regeneration of Adult Muscle Tissue.
R. Stella, M. L. Massimino, M. Sandri, M. C. Sorgato, and A. Bertoli (2010)
Mol. Cell. Biol. 30, 4864-4876
   Abstract »    Full Text »    PDF »
Neurotoxic Mutants of the Prion Protein Induce Spontaneous Ionic Currents in Cultured Cells.
I. H. Solomon, J. E. Huettner, and D. A. Harris (2010)
J. Biol. Chem. 285, 26719-26726
   Abstract »    Full Text »    PDF »
Isolation and Characterization of Patient-derived, Toxic, High Mass Amyloid {beta}-Protein (A{beta}) Assembly from Alzheimer Disease Brains.
A. Noguchi, S. Matsumura, M. Dezawa, M. Tada, M. Yanazawa, A. Ito, M. Akioka, S. Kikuchi, M. Sato, S. Ideno, et al. (2009)
J. Biol. Chem. 284, 32895-32905
   Abstract »    Full Text »    PDF »
All quiet on the neuronal front: NMDA receptor inhibition by prion protein.
A. D. Steele (2008)
J. Cell Biol. 181, 407-409
   Abstract »    Full Text »    PDF »
Prions show their good side.
M. Leslie (2008)
J. Cell Biol. 181, 398
   Full Text »    PDF »
Prion protein attenuates excitotoxicity by inhibiting NMDA receptors.
H. Khosravani, Y. Zhang, S. Tsutsui, S. Hameed, C. Altier, J. Hamid, L. Chen, M. Villemaire, Z. Ali, F. R. Jirik, et al. (2008)
J. Gen. Physiol. 131, i5
   Full Text »
Prion protein attenuates excitotoxicity by inhibiting NMDA receptors.
H. Khosravani, Y. Zhang, S. Tsutsui, S. Hameed, C. Altier, J. Hamid, L. Chen, M. Villemaire, Z. Ali, F. R. Jirik, et al. (2008)
J. Exp. Med. 205, i13
   Full Text »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882