Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Cell Biol. 182 (2): 249-261

Copyright © 2008 by the Rockefeller University Press.


Genetic control of cell morphogenesis during Drosophila melanogaster cardiac tube formation

Caroline Medioni1, Martine Astier1, Monika Zmojdzian2, Krzysztof Jagla2, , and Michel Sémériva1

1 Institut de Biologie du Développement de Marseille-Luminy, Centre National de la Recherche Scientifique UMR 6216, Université de la Méditerranée, 13288 Marseille, Cedex 9, France
2 Unité Mixte de Recherche, Institut National de la Santé et de la Recherche Médicale et Centre National de la Recherche Scientifique 6247-Genetique, Reproduction et Developpement, Université de Clermont-Ferrand, 63000 Clermont-Ferrand, France

Correspondence to Caroline Medioni: medioni{at}

Abstract: Tubulogenesis is an essential component of organ development, yet the underlying cellular mechanisms are poorly understood. We analyze here the formation of the Drosophila melanogaster cardiac lumen that arises from the migration and subsequent coalescence of bilateral rows of cardioblasts. Our study of cell behavior using three-dimensional and time-lapse imaging and the distribution of cell polarity markers reveals a new mechanism of tubulogenesis in which repulsion of prepatterned luminal domains with basal membrane properties and cell shape remodeling constitute the main driving forces. Furthermore, we identify a genetic pathway in which roundabout, slit, held out wings, and dystroglycan control cardiac lumen formation by establishing nonadherent luminal membranes and regulating cell shape changes. From these data we propose a model for D. melanogaster cardiac lumen formation, which differs, both at a cellular and molecular level, from current models of epithelial tubulogenesis. We suggest that this new example of tube formation may be helpful in studying vertebrate heart tube formation and primary vasculogenesis.

Abbreviations used in this paper: Arm, Armadillo; CB, cardioblast; DE-Cad, DE-cadherin; Dg, Dystroglycan; Dlg, Discs large; How, Held out wings; Lgl, Lethal giant larvae; Robo, Roundabout; Shg, Shotgun; Trol, Terribly reduced optic lobes; UAS, upstream activating sequence.

© 2008 Medioni et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at

M. L. Iruela-Arispe and G. J. Beitel (2013)
Development 140, 2851-2855
   Abstract »    Full Text »    PDF »
Slit-Roundabout Signaling Regulates the Development of the Cardiac Systemic Venous Return and Pericardium.
M. T. M. Mommersteeg, W. D. Andrews, A. R. Ypsilanti, P. Zelina, M. L. Yeh, J. Norden, A. Kispert, A. Chedotal, V. M. Christoffels, and J. G. Parnavelas (2013)
Circ. Res. 112, 465-475
   Abstract »    Full Text »    PDF »
Coordinated genomic control of ciliogenesis and cell movement by RFX2.
M.-I. Chung, T. Kwon, F. Tu, E. R. Brooks, R. Gupta, M. Meyer, J. C. Baker, E. M. Marcotte, and J. B. Wallingford (2013)
eLife Sci 3, e01439
   Abstract »    Full Text »    PDF »
Vascular Lumen Formation.
E. Lammert and J. Axnick (2012)
Cold Spring Harb Perspect Med 2, a006619
   Abstract »    Full Text »    PDF »
Slit1b-Robo3 Signaling and N-Cadherin Regulate Apical Process Retraction in Developing Retinal Ganglion Cells.
G. K. W. Wong, M.-L. Baudet, C. Norden, L. Leung, and W. A. Harris (2012)
J. Neurosci. 32, 223-228
   Abstract »    Full Text »    PDF »
A Slit/miR-218/Robo regulatory loop is required during heart tube formation in zebrafish.
J. E. Fish, J. D. Wythe, T. Xiao, B. G. Bruneau, D. Y. R. Stainier, D. Srivastava, and S. Woo (2011)
Development 138, 1409-1419
   Abstract »    Full Text »    PDF »
Cadherin 6B induces BMP signaling and de-epithelialization during the epithelial mesenchymal transition of the neural crest.
K.-S. Park and B. M. Gumbiner (2010)
Development 137, 2691-2701
   Abstract »    Full Text »    PDF »
Moving away from the midline: new developments for Slit and Robo.
A. R. Ypsilanti, Y. Zagar, and A. Chedotal (2010)
Development 137, 1939-1952
   Abstract »    Full Text »    PDF »
Regulatory Subunit I-controlled Protein Kinase A Activity Is Required for Apical Bile Canalicular Lumen Development in Hepatocytes.
K. A. Wojtal, M. Diskar, F. W. Herberg, D. Hoekstra, and S. C. D. van IJzendoorn (2009)
J. Biol. Chem. 284, 20773-20780
   Abstract »    Full Text »    PDF »
M. Leslie (2008)
J. Cell Biol. 182, 216
   Full Text »    PDF »
The first "Slit" is the deepest: the secret to a hollow heart.
I. T. Helenius and G. J. Beitel (2008)
J. Cell Biol. 182, 221-223
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882