Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Cell Biol. 183 (5): 795-803

Copyright © 2008 by the Rockefeller University Press.


Report

Parkin is recruited selectively to impaired mitochondria and promotes their autophagy

Derek Narendra1,2, Atsushi Tanaka1, Der-Fen Suen1, , and Richard J. Youle1

1 Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
2 Howard Hughes Medical Institute National Institutes of Health Research Scholars Program, Bethesda, MD 20814

Correspondence to Richard J. Youle: youler{at}ninds.nih.gov

Abstract: Loss-of-function mutations in Park2, the gene coding for the ubiquitin ligase Parkin, are a significant cause of early onset Parkinson's disease. Although the role of Parkin in neuron maintenance is unknown, recent work has linked Parkin to the regulation of mitochondria. Its loss is associated with swollen mitochondria and muscle degeneration in Drosophila melanogaster, as well as mitochondrial dysfunction and increased susceptibility to mitochondrial toxins in other species. Here, we show that Parkin is selectively recruited to dysfunctional mitochondria with low membrane potential in mammalian cells. After recruitment, Parkin mediates the engulfment of mitochondria by autophagosomes and the selective elimination of impaired mitochondria. These results show that Parkin promotes autophagy of damaged mitochondria and implicate a failure to eliminate dysfunctional mitochondria in the pathogenesis of Parkinson's disease.

Abbreviations used in this paper: au, arbitrary units; CCCP, carbonyl cyanide m-chlorophenylhydrazone; Drp1, dynamin-related protein 1; FLIP, fluorescence loss in photobleaching; Mfn, mitofusin; MEF, mouse embryonic fibroblast; ROI, region of interest; vMIA, viral mitochondrial-associated inhibitor of apoptosis; WT, wild type.

© 2008 Narendra et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.jcb.org/misc/terms.shtml). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Essential Role of TID1 in Maintaining Mitochondrial Membrane Potential Homogeneity and Mitochondrial DNA Integrity.
A. C.-H. Ng, S. D. Baird, and R. A. Screaton (2014)
Mol. Cell. Biol. 34, 1427-1437
   Abstract »    Full Text »    PDF »
Mitochondrial Dysfunction and Decrease in Body Weight of a Transgenic Knock-in Mouse Model for TDP-43.
C. Stribl, A. Samara, D. Trumbach, R. Peis, M. Neumann, H. Fuchs, V. Gailus-Durner, M. Hrabě de Angelis, B. Rathkolb, E. Wolf, et al. (2014)
J. Biol. Chem. 289, 10769-10784
   Abstract »    Full Text »    PDF »
MicroRNA-137 Is a Novel Hypoxia-responsive MicroRNA That Inhibits Mitophagy via Regulation of Two Mitophagy Receptors FUNDC1 and NIX.
W. Li, X. Zhang, H. Zhuang, H.-g. Chen, Y. Chen, W. Tian, W. Wu, Y. Li, S. Wang, L. Zhang, et al. (2014)
J. Biol. Chem. 289, 10691-10701
   Abstract »    Full Text »    PDF »
Autophagic Clearance of Mitochondria in the Kidney Copes with Metabolic Acidosis.
T. Namba, Y. Takabatake, T. Kimura, A. Takahashi, T. Yamamoto, J. Matsuda, H. Kitamura, F. Niimura, T. Matsusaka, H. Iwatani, et al. (2014)
J. Am. Soc. Nephrol.
   Abstract »
Arginine Starvation Impairs Mitochondrial Respiratory Function in ASS1-Deficient Breast Cancer Cells.
F. Qiu, Y.-R. Chen, X. Liu, C.-Y. Chu, L.-J. Shen, J. Xu, S. Gaur, H. J. Forman, H. Zhang, S. Zheng, et al. (2014)
Science Signaling 7, ra31
   Abstract »    Full Text »    PDF »
Increased sensitivity to mitochondrial permeability transition and myonuclear translocation of endonuclease G in atrophied muscle of physically active older humans.
G. Gouspillou, N. Sgarioto, S. Kapchinsky, F. Purves-Smith, B. Norris, C. H. Pion, S. Barbat-Artigas, F. Lemieux, T. Taivassalo, J. A. Morais, et al. (2014)
FASEB J 28, 1621-1633
   Abstract »    Full Text »    PDF »
Mitochondrial trafficking and anchoring in neurons: New insight and implications.
Z.-H. Sheng (2014)
J. Cell Biol. 204, 1087-1098
   Abstract »    Full Text »    PDF »
Loss of the m-AAA protease subunit AFG3L2 causes mitochondrial transport defects and tau hyperphosphorylation.
A. K. Kondadi, S. Wang, S. Montagner, N. Kladt, A. Korwitz, P. Martinelli, D. Herholz, M. J. Baker, A. C. Schauss, T. Langer, et al. (2014)
EMBO J.
   Abstract »    Full Text »    PDF »
ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy.
W. Wu, W. Tian, Z. Hu, G. Chen, L. Huang, W. Li, X. Zhang, P. Xue, C. Zhou, L. Liu, et al. (2014)
EMBO Rep.
   Abstract »    Full Text »    PDF »
Stress-induced OMA1 activation and autocatalytic turnover regulate OPA1-dependent mitochondrial dynamics.
M. J. Baker, P. A. Lampe, D. Stojanovski, A. Korwitz, R. Anand, T. Tatsuta, and T. Langer (2014)
EMBO J. 33, 578-593
   Abstract »    Full Text »    PDF »
Dynamic survey of mitochondria by ubiquitin.
M. Escobar-Henriques and T. Langer (2014)
EMBO Rep. 15, 231-243
   Abstract »    Full Text »    PDF »
Mechanism of the Susceptibility of Remodeled Pulmonary Vessels to Drug-Induced Cell Killing.
Y. F. Ibrahim, C.-M. Wong, L. Pavlickova, L. Liu, L. Trasar, G. Bansal, and Y. J. Suzuki (2014)
JAHA 3, e000520
   Abstract »    Full Text »    PDF »
Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control.
G.-L. McLelland, V. Soubannier, C. X. Chen, H. M. McBride, and E. A. Fon (2014)
EMBO J. 33, 282-295
   Abstract »    Full Text »    PDF »
Whey Peptide-Based Formulas With {omega}-3 Fatty Acids Are Protective in LPS-Mediated Sepsis.
R. Tsutsumi, Y. T. Horikawa, K. Kume, K. Tanaka, A. Kasai, T. Kadota, and Y. M. Tsutsumi (2014)
JPEN J Parenter Enteral Nutr
   Abstract »    Full Text »    PDF »
Rapamycin drives selection against a pathogenic heteroplasmic mitochondrial DNA mutation.
Y. Dai, K. Zheng, J. Clark, R. H. Swerdlow, S. M. Pulst, J. P. Sutton, L. A. Shinobu, and D. K. Simon (2014)
Hum. Mol. Genet. 23, 637-647
   Abstract »    Full Text »    PDF »
RBR E3-ligases at work.
J. J. Smit and T. K. Sixma (2014)
EMBO Rep. 15, 142-154
   Abstract »    Full Text »    PDF »
Catecholamine metabolism drives generation of mitochondrial DNA deletions in dopaminergic neurons.
J. F. G. Neuhaus, O. R. Baris, S. Hess, N. Moser, H. Schroder, S. J. Chinta, J. K. Andersen, P. Kloppenburg, and R. J. Wiesner (2014)
Brain 137, 354-365
   Abstract »    Full Text »    PDF »
GCN5-like Protein 1 (GCN5L1) Controls Mitochondrial Content through Coordinated Regulation of Mitochondrial Biogenesis and Mitophagy.
I. Scott, B. R. Webster, C. K. Chan, J. U. Okonkwo, K. Han, and M. N. Sack (2014)
J. Biol. Chem. 289, 2864-2872
   Abstract »    Full Text »    PDF »
Collapsin Response Mediator Protein 5 (CRMP5) Induces Mitophagy, Thereby Regulating Mitochondrion Numbers in Dendrites.
S. Brot, C. Auger, R. Bentata, V. Rogemond, S. Menigoz, N. Chounlamountri, A. Girard-Egrot, J. Honnorat, and M. Moradi-Ameli (2014)
J. Biol. Chem. 289, 2261-2276
   Abstract »    Full Text »    PDF »
Cytosolic cleaved PINK1 represses Parkin translocation to mitochondria and mitophagy.
M. A. Fedorowicz, R. L. A. de Vries-Schneider, C. Rub, D. Becker, Y. Huang, C. Zhou, D. M. Alessi Wolken, W. Voos, Y. Liu, and S. Przedborski (2014)
EMBO Rep. 15, 86-93
   Abstract »    Full Text »    PDF »
Effects of Lithium on Age-related Decline in Mitochondrial Turnover and Function in Caenorhabditis elegans.
Z. Y. Tam, J. Gruber, L. F. Ng, B. Halliwell, and R. Gunawan (2014)
J Gerontol A Biol Sci Med Sci
   Abstract »    Full Text »    PDF »
Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy.
K. Yamano, A. I. Fogel, C. Wang, A. M. van der Bliek, and R. J. Youle (2014)
eLife Sci 3, e01612
   Abstract »    Full Text »    PDF »
Hexokinase activity is required for recruitment of parkin to depolarized mitochondria.
M. K. McCoy, A. Kaganovich, I. N. Rudenko, J. Ding, and M. R. Cookson (2014)
Hum. Mol. Genet. 23, 145-156
   Abstract »    Full Text »    PDF »
Mutations in Fis1 disrupt orderly disposal of defective mitochondria.
Q. Shen, K. Yamano, B. P. Head, S. Kawajiri, J. T. M. Cheung, C. Wang, J.-H. Cho, N. Hattori, R. J. Youle, and A. M. van der Bliek (2014)
Mol. Biol. Cell 25, 145-159
   Abstract »    Full Text »    PDF »
A Dimeric PINK1-containing Complex on Depolarized Mitochondria Stimulates Parkin Recruitment.
K. Okatsu, M. Uno, F. Koyano, E. Go, M. Kimura, T. Oka, K. Tanaka, and N. Matsuda (2013)
J. Biol. Chem. 288, 36372-36384
   Abstract »    Full Text »    PDF »
Identification of the Ubiquitin-like Domain of Midnolin as a New Glucokinase Interaction Partner.
A. Hofmeister-Brix, K. Kollmann, S. Langer, J. Schultz, S. Lenzen, and S. Baltrusch (2013)
J. Biol. Chem. 288, 35824-35839
   Abstract »    Full Text »    PDF »
Loss of iron triggers PINK1/Parkin-independent mitophagy.
G. F. G. Allen, R. Toth, J. James, and I. G. Ganley (2013)
EMBO Rep. 14, 1127-1135
   Abstract »    Full Text »    PDF »
Rheb and mammalian target of rapamycin in mitochondrial homoeostasis.
M. J. Groenewoud and F. J. T. Zwartkruis (2013)
Open Bio 3, 130185
   Abstract »    Full Text »    PDF »
Road to exercise mimetics: targeting nuclear receptors in skeletal muscle.
W. Fan, A. R. Atkins, R. T. Yu, M. Downes, and R. M. Evans (2013)
J. Mol. Endocrinol. 51, T87-T100
   Abstract »    Full Text »    PDF »
Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by LRRK2 G2019S mutation.
Y.-C. Su and X. Qi (2013)
Hum. Mol. Genet. 22, 4545-4561
   Abstract »    Full Text »    PDF »
New Approaches for Studying Synaptic Development, Function, and Plasticity Using Drosophila as a Model System.
C. A. Frank, X. Wang, C. A. Collins, A. A. Rodal, Q. Yuan, P. Verstreken, and D. K. Dickman (2013)
J. Neurosci. 33, 17560-17568
   Abstract »    Full Text »    PDF »
Restricted mitochondrial protein acetylation initiates mitochondrial autophagy.
B. R. Webster, I. Scott, K. Han, J. H. Li, Z. Lu, M. V. Stevens, D. Malide, Y. Chen, L. Samsel, P. S. Connelly, et al. (2013)
J. Cell Sci. 126, 4843-4849
   Abstract »    Full Text »    PDF »
Mitochondrial DNA Genetics and the Heteroplasmy Conundrum in Evolution and Disease.
D. C. Wallace and D. Chalkia (2013)
Cold Spring Harb Perspect Biol 5, a021220
   Abstract »    Full Text »    PDF »
SARM1 and TRAF6 bind to and stabilize PINK1 on depolarized mitochondria.
H. Murata, M. Sakaguchi, K. Kataoka, and N.-h. Huh (2013)
Mol. Biol. Cell 24, 2772-2784
   Abstract »    Full Text »    PDF »
Casein kinase 2 is essential for mitophagy.
T. Kanki, Y. Kurihara, X. Jin, T. Goda, Y. Ono, M. Aihara, Y. Hirota, T. Saigusa, Y. Aoki, T. Uchiumi, et al. (2013)
EMBO Rep. 14, 788-794
   Abstract »    Full Text »    PDF »
Mitochondrial Regulation of Cell Death.
S. W. G. Tait and D. R. Green (2013)
Cold Spring Harb Perspect Biol 5, a008706
   Abstract »    Full Text »    PDF »
Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics.
E. Marzetti, A. Csiszar, D. Dutta, G. Balagopal, R. Calvani, and C. Leeuwenburgh (2013)
Am J Physiol Heart Circ Physiol 305, H459-H476
   Abstract »    Full Text »    PDF »
Tyrosine kinase inhibition increases functional parkin-Beclin-1 interaction and enhances amyloid clearance and cognitive performance.
I. Lonskaya, M. L. Hebron, N. M. Desforges, A. Franjie, and C. E.- H. Moussa (2013)
EMBO Mol Med. 5, 1247-1262
   Abstract »    Full Text »    PDF »
Mesencephalic complex I deficiency does not correlate with parkinsonism in mitochondrial DNA maintenance disorders.
E. J. H. Palin, A. Paetau, and A. Suomalainen (2013)
Brain 136, 2379-2392
   Abstract »    Full Text »    PDF »
Parkin-catalyzed Ubiquitin-Ester Transfer Is Triggered by PINK1-dependent Phosphorylation.
M. Iguchi, Y. Kujuro, K. Okatsu, F. Koyano, H. Kosako, M. Kimura, N. Suzuki, S. Uchiyama, K. Tanaka, and N. Matsuda (2013)
J. Biol. Chem. 288, 22019-22032
   Abstract »    Full Text »    PDF »
TRAP1 rescues PINK1 loss-of-function phenotypes.
L. Zhang, P. Karsten, S. Hamm, J. H. Pogson, A. K. Muller-Rischart, N. Exner, C. Haass, A. J. Whitworth, K. F. Winklhofer, J. B. Schulz, et al. (2013)
Hum. Mol. Genet. 22, 2829-2841
   Abstract »    Full Text »    PDF »
Autophagy: a potential therapeutic target in lung diseases.
K. Nakahira and A. M. K. Choi (2013)
Am J Physiol Lung Cell Mol Physiol 305, L93-L107
   Abstract »    Full Text »    PDF »
PINK1 rendered temperature sensitive by disease-associated and engineered mutations.
D. P. Narendra, C. Wang, R. J. Youle, and J. E. Walker (2013)
Hum. Mol. Genet. 22, 2572-2589
   Abstract »    Full Text »    PDF »
The Impact of Pathogenic Mitochondrial DNA Mutations on Substantia Nigra Neurons.
A. Reeve, M. Meagher, N. Lax, E. Simcox, P. Hepplewhite, E. Jaros, and D. Turnbull (2013)
J. Neurosci. 33, 10790-10801
   Abstract »    Full Text »    PDF »
Diminished Autophagy Limits Cardiac Injury in Mouse Models of Type 1 Diabetes.
X. Xu, S. Kobayashi, K. Chen, D. Timm, P. Volden, Y. Huang, J. Gulick, Z. Yue, J. Robbins, P. N. Epstein, et al. (2013)
J. Biol. Chem. 288, 18077-18092
   Abstract »    Full Text »    PDF »
Structure of Parkin Reveals Mechanisms for Ubiquitin Ligase Activation.
J.-F. Trempe, V. Sauve, K. Grenier, M. Seirafi, M. Y. Tang, M. Menade, S. Al-Abdul-Wahid, J. Krett, K. Wong, G. Kozlov, et al. (2013)
Science 340, 1451-1455
   Abstract »    Full Text »    PDF »
Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan.
A. Rana, M. Rera, and D. W. Walker (2013)
PNAS 110, 8638-8643
   Abstract »    Full Text »    PDF »
AF-6 is a positive modulator of the PINK1/parkin pathway and is deficient in Parkinson's disease.
J. Haskin, R. Szargel, V. Shani, L. N. Mekies, R. Rott, G. G. Y. Lim, K.-L. Lim, R. Bandopadhyay, H. Wolosker, and S. Engelender (2013)
Hum. Mol. Genet. 22, 2083-2096
   Abstract »    Full Text »    PDF »
Role of p62/SQSTM1 in liver physiology and pathogenesis.
S. Manley, J. A. Williams, and W.-X. Ding (2013)
Experimental Biology and Medicine 238, 525-538
   Abstract »    Full Text »    PDF »
Role of autophagy in COPD skeletal muscle dysfunction.
S. N. A. Hussain and M. Sandri (2013)
J Appl Physiol 114, 1273-1281
   Abstract »    Full Text »    PDF »
Parkin promotes cell survival via linear ubiquitination.
E. Fiskin and I. Dikic (2013)
EMBO J. 32, 1072-1074
   Full Text »    PDF »
The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo.
E. S. Vincow, G. Merrihew, R. E. Thomas, N. J. Shulman, R. P. Beyer, M. J. MacCoss, and L. J. Pallanck (2013)
PNAS 110, 6400-6405
   Abstract »    Full Text »    PDF »
Sequestration and autophagy of mitochondria do not cut proteins across the board.
C.-H. Huang, M. Lazarou, and R. J. Youle (2013)
PNAS 110, 6252-6253
   Full Text »    PDF »
Regulation of mitophagy by the Gp78 E3 ubiquitin ligase.
M. Fu, P. St-Pierre, J. Shankar, P. T. C. Wang, B. Joshi, and I. R. Nabi (2013)
Mol. Biol. Cell 24, 1153-1162
   Abstract »    Full Text »    PDF »
Autophagy Protects the Retina from Light-induced Degeneration.
Y. Chen, O. Sawada, H. Kohno, Y.-Z. Le, C. Subauste, T. Maeda, and A. Maeda (2013)
J. Biol. Chem. 288, 7506-7518
   Abstract »    Full Text »    PDF »
Whole exome sequencing of rare variants in EIF4G1 and VPS35 in Parkinson disease.
K. Nuytemans, G. Bademci, V. Inchausti, A. Dressen, D. D. Kinnamon, A. Mehta, L. Wang, S. Zuchner, G. W. Beecham, E. R. Martin, et al. (2013)
Neurology 80, 982-989
   Abstract »    Full Text »    PDF »
Adaptive plasticity of autophagic proteins to denervation in aging skeletal muscle.
M. F. O'Leary, A. Vainshtein, S. Iqbal, O. Ostojic, and D. A. Hood (2013)
Am J Physiol Cell Physiol 304, C422-C430
   Abstract »    Full Text »    PDF »
Bif-1 haploinsufficiency promotes chromosomal instability and accelerates Myc-driven lymphomagenesis via suppression of mitophagy.
Y. Takahashi, T. Hori, T. K. Cooper, J. Liao, N. Desai, J. M. Serfass, M. M. Young, S. Park, Y. Izu, and H.-G. Wang (2013)
Blood 121, 1622-1632
   Abstract »    Full Text »    PDF »
Phosphatidylethanolamine Deficiency in Mammalian Mitochondria Impairs Oxidative Phosphorylation and Alters Mitochondrial Morphology.
G. Tasseva, H. D. Bai, M. Davidescu, A. Haromy, E. Michelakis, and J. E. Vance (2013)
J. Biol. Chem. 288, 4158-4173
   Abstract »    Full Text »    PDF »
Declines in Drp1 and Parkin Expression Underlie DNA Damage-Induced Changes in Mitochondrial Length and Neuronal Death.
D. B. Wang, G. A. Garden, C. Kinoshita, C. Wyles, N. Babazadeh, B. Sopher, Y. Kinoshita, and R. S. Morrison (2013)
J. Neurosci. 33, 1357-1365
   Abstract »    Full Text »    PDF »
PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding.
M. Lazarou, D. P. Narendra, S. M. Jin, E. Tekle, S. Banerjee, and R. J. Youle (2013)
J. Cell Biol. 200, 163-172
   Abstract »    Full Text »    PDF »
Parkin Protein Deficiency Exacerbates Cardiac Injury and Reduces Survival following Myocardial Infarction.
D. A. Kubli, X. Zhang, Y. Lee, R. A. Hanna, M. N. Quinsay, C. K. Nguyen, R. Jimenez, S. Petrosyan, A. N. Murphy, and A. B. Gustafsson (2013)
J. Biol. Chem. 288, 915-926
   Abstract »    Full Text »    PDF »
Modulation of Serines 17 and 24 in the LC3-interacting Region of Bnip3 Determines Pro-survival Mitophagy versus Apoptosis.
Y. Zhu, S. Massen, M. Terenzio, V. Lang, S. Chen-Lindner, R. Eils, I. Novak, I. Dikic, A. Hamacher-Brady, and N. R. Brady (2013)
J. Biol. Chem. 288, 1099-1113
   Abstract »    Full Text »    PDF »
Rescue of PINK1 Protein Null-specific Mitochondrial Complex IV Deficits by Ginsenoside Re Activation of Nitric Oxide Signaling.
K.-H. Kim, K. Song, S.-H. Yoon, O. Shehzad, Y.-S. Kim, and J. H. Son (2012)
J. Biol. Chem. 287, 44109-44120
   Abstract »    Full Text »    PDF »
Parkin and Mitofusins Reciprocally Regulate Mitophagy and Mitochondrial Spheroid Formation.
W.-X. Ding, F. Guo, H.-M. Ni, A. Bockus, S. Manley, D. B. Stolz, E.-L. Eskelinen, H. Jaeschke, and X.-M. Yin (2012)
J. Biol. Chem. 287, 42379-42388
   Abstract »    Full Text »    PDF »
Electron Microscopic Analysis of a Spherical Mitochondrial Structure.
W.-X. Ding, M. Li, J. M. Biazik, D. G. Morgan, F. Guo, H.-M. Ni, M. Goheen, E.-L. Eskelinen, and X.-M. Yin (2012)
J. Biol. Chem. 287, 42373-42378
   Abstract »    Full Text »    PDF »
Voltage-dependent Anion Channels (VDACs) Recruit Parkin to Defective Mitochondria to Promote Mitochondrial Autophagy.
Y. Sun, A. A. Vashisht, J. Tchieu, J. A. Wohlschlegel, and L. Dreier (2012)
J. Biol. Chem. 287, 40652-40660
   Abstract »    Full Text »    PDF »
ROS-dependent regulation of Parkin and DJ-1 localization during oxidative stress in neurons.
A. P. Joselin, S. J. Hewitt, S. M. Callaghan, R. H. Kim, Y.-H. Chung, T. W. Mak, J. Shen, R. S. Slack, and D. S. Park (2012)
Hum. Mol. Genet. 21, 4888-4903
   Abstract »    Full Text »    PDF »
Mitofusin 2 is necessary for striatal axonal projections of midbrain dopamine neurons.
S. Lee, F. H. Sterky, A. Mourier, M. Terzioglu, S. Cullheim, L. Olson, and N.-G. Larsson (2012)
Hum. Mol. Genet. 21, 4827-4835
   Abstract »    Full Text »    PDF »
In Vivo Imaging of Disease-Related Mitochondrial Dynamics in a Vertebrate Model System.
G. Plucinska, D. Paquet, A. Hruscha, L. Godinho, C. Haass, B. Schmid, and T. Misgeld (2012)
J. Neurosci. 32, 16203-16212
   Abstract »    Full Text »    PDF »
Development and Characterization of a New Parkinson's Disease Model Resulting from Impaired Autophagy.
I. Ahmed, Y. Liang, S. Schools, V. L. Dawson, T. M. Dawson, and J. M. Savitt (2012)
J. Neurosci. 32, 16503-16509
   Abstract »    Full Text »    PDF »
Mitochondrial Quality Control Mediated by PINK1 and Parkin: Links to Parkinsonism.
D. Narendra, J. E. Walker, and R. Youle (2012)
Cold Spring Harb Perspect Biol 4, a011338
   Abstract »    Full Text »    PDF »
Drosophila as a Model to Study Mitochondrial Dysfunction in Parkinson's Disease.
M. Guo (2012)
Cold Spring Harb Perspect Med 2, a009944
   Abstract »    Full Text »    PDF »
Autophagy-related Gene 7 (ATG7) and Reactive Oxygen Species/Extracellular Signal-regulated Kinase Regulate Tetrandrine-induced Autophagy in Human Hepatocellular Carcinoma.
K. Gong, C. Chen, Y. Zhan, Y. Chen, Z. Huang, and W. Li (2012)
J. Biol. Chem. 287, 35576-35588
   Abstract »    Full Text »    PDF »
Mitochondria and Mitophagy: The Yin and Yang of Cell Death Control.
D. A. Kubli and A. B. Gustafsson (2012)
Circ. Res. 111, 1208-1221
   Abstract »    Full Text »    PDF »
AMP Kinase Activation Mitigates Dopaminergic Dysfunction and Mitochondrial Abnormalities in Drosophila Models of Parkinson's Disease.
C.-H. Ng, M. S. H. Guan, C. Koh, X. Ouyang, F. Yu, E.-K. Tan, S. P. O'Neill, X. Zhang, J. Chung, and K.-L. Lim (2012)
J. Neurosci. 32, 14311-14317
   Abstract »    Full Text »    PDF »
Autophagy and Neuronal Cell Death in Neurological Disorders.
R. A. Nixon and D.-S. Yang (2012)
Cold Spring Harb Perspect Biol 4, a008839
   Abstract »    Full Text »    PDF »
Quiescent fibroblasts are protected from proteasome inhibition-mediated toxicity.
A. Legesse-Miller, I. Raitman, E. M. Haley, A. Liao, L. L. Sun, D. J. Wang, N. Krishnan, J. M. S. Lemons, E. J. Suh, E. L. Johnson, et al. (2012)
Mol. Biol. Cell 23, 3566-3581
   Abstract »    Full Text »    PDF »
Mitochondrial dynamics and autophagy aid in removal of persistent mitochondrial DNA damage in Caenorhabditis elegans.
A. S. Bess, T. L. Crocker, I. T. Ryde, and J. N. Meyer (2012)
Nucleic Acids Res. 40, 7916-7931
   Abstract »    Full Text »    PDF »
Parkinsonism Due to Mutations in PINK1, Parkin, and DJ-1 and Oxidative Stress and Mitochondrial Pathways.
M. R. Cookson (2012)
Cold Spring Harb Perspect Med 2, a009415
   Abstract »    Full Text »    PDF »
Mitochondrial Fission, Fusion, and Stress.
R. J. Youle and A. M. van der Bliek (2012)
Science 337, 1062-1065
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882