Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Cell Biol. 185 (1): 35-42

Copyright © 2009 by the Rockefeller University Press.


Report

Angiogenin cleaves tRNA and promotes stress-induced translational repression

Satoshi Yamasaki1, Pavel Ivanov1, Guo-fu Hu2, , and Paul Anderson1

1 Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and 2 Department of Pathology, Harvard Medical School, Boston, MA 02115

Correspondence to Paul Anderson: panderson{at}rics.bwh.harvard.edu

Abstract: Stress-induced phosphorylation of eIF2{alpha} inhibits global protein synthesis to conserve energy for repair of stress-induced damage. Stress-induced translational arrest is observed in cells expressing a nonphosphorylatable eIF2{alpha} mutant (S51A), which indicates the existence of an alternative pathway of translational control. In this paper, we show that arsenite, heat shock, or ultraviolet irradiation promotes transfer RNA (tRNA) cleavage and accumulation of tRNA-derived, stress-induced small RNAs (tiRNAs). We show that angiogenin, a secreted ribonuclease, is required for stress-induced production of tiRNAs. Knockdown of angiogenin, but not related ribonucleases, inhibits arsenite-induced tiRNA production and translational arrest. In contrast, knockdown of the angiogenin inhibitor RNH1 enhances tiRNA production and promotes arsenite-induced translational arrest. Moreover, recombinant angiogenin, but not RNase 4 or RNase A, induces tiRNA production and inhibits protein synthesis in the absence of exogenous stress. Finally, transfection of angiogenin-induced tiRNAs promotes phospho-eIF2{alpha}–independent translational arrest. Our results introduce angiogenin and tiRNAs as components of a phospho-eIF2{alpha}–independent stress response program.


S. Yamasaki and P. Ivanov contributed equally to this paper.

Abbreviations used in this paper: MEF, mouse embryo fibroblast; piRNA, PIWI-associated RNA; tiRNA, transfer RNA-derived stress-induced RNA.



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Ribonuclease L and metal-ion-independent endoribonuclease cleavage sites in host and viral RNAs.
D. A. Cooper, B. K. Jha, R. H. Silverman, J. R. Hesselberth, and D. J. Barton (2014)
Nucleic Acids Res.
   Abstract »    Full Text »    PDF »
Ribonuclease/angiogenin inhibitor 1 regulates stress-induced subcellular localization of angiogenin to control growth and survival.
E. Pizzo, C. Sarcinelli, J. Sheng, S. Fusco, F. Formiggini, P. Netti, W. Yu, G. D'Alessio, and G.-f. Hu (2013)
J. Cell Sci. 126, 4308-4319
   Abstract »    Full Text »    PDF »
Transfer RNA Post-Transcriptional Processing, Turnover, and Subcellular Dynamics in the Yeast Saccharomyces cerevisiae.
A. K. Hopper (2013)
Genetics 194, 43-67
   Abstract »    Full Text »    PDF »
Degradation of initiator tRNAMet by Xrn1/2 via its accumulation in the nucleus of heat-treated HeLa cells.
K. Watanabe, R. Miyagawa, C. Tomikawa, R. Mizuno, A. Takahashi, H. Hori, and K. Ijiri (2013)
Nucleic Acids Res. 41, 4671-4685
   Abstract »    Full Text »    PDF »
A Comprehensive Expression Profile of MicroRNAs and Other Classes of Non-Coding Small RNAs in Barley Under Phosphorous-Deficient and -Sufficient Conditions.
M. Hackenberg, P.-J. Huang, C.-Y. Huang, B.-J. Shi, P. Gustafson, and P. Langridge (2013)
DNA Res 20, 109-125
   Abstract »    Full Text »    PDF »
Genome-wide Identification and Quantitative Analysis of Cleaved tRNA Fragments Induced by Cellular Stress.
M. Saikia, D. Krokowski, B.-J. Guan, P. Ivanov, M. Parisien, G.-f. Hu, P. Anderson, T. Pan, and M. Hatzoglou (2012)
J. Biol. Chem. 287, 42708-42725
   Abstract »    Full Text »    PDF »
Extensive terminal and asymmetric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs.
Z. Li, C. Ender, G. Meister, P. S. Moore, Y. Chang, and B. John (2012)
Nucleic Acids Res. 40, 6787-6799
   Abstract »    Full Text »    PDF »
Transcriptome-wide analysis of small RNA expression in early zebrafish development.
C. Wei, L. Salichos, C. M. Wittgrove, A. Rokas, and J. G. Patton (2012)
RNA 18, 915-929
   Abstract »    Full Text »    PDF »
Motoneurons Secrete Angiogenin to Induce RNA Cleavage in Astroglia.
A. Skorupa, M. A. King, I. M. Aparicio, H. Dussmann, K. Coughlan, B. Breen, D. Kieran, C. G. Concannon, P. Marin, and J. H. M. Prehn (2012)
J. Neurosci. 32, 5024-5038
   Abstract »    Full Text »    PDF »
Probing the substrate specificity of the bacterial Pnkp/Hen1 RNA repair system using synthetic RNAs.
C. Zhang, C. M. Chan, P. Wang, and R. H. Huang (2012)
RNA 18, 335-344
   Abstract »    Full Text »    PDF »
Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen and Angiogenin Interact with Common Host Proteins, Including Annexin A2, Which Is Essential for Survival of Latently Infected Cells.
N. Paudel, S. Sadagopan, S. Balasubramanian, and B. Chandran (2012)
J. Virol. 86, 1589-1607
   Abstract »    Full Text »    PDF »
Several RNase T2 enzymes function in induced tRNA and rRNA turnover in the ciliate Tetrahymena.
K. L. Andersen and K. Collins (2012)
Mol. Biol. Cell 23, 36-44
   Abstract »    Full Text »    PDF »
Age-associated changes in expression of small, noncoding RNAs, including microRNAs, in C. elegans.
M. Kato, X. Chen, S. Inukai, H. Zhao, and F. J. Slack (2011)
RNA 17, 1804-1820
   Abstract »    Full Text »    PDF »
RNA degradome--its biogenesis and functions.
P. Jackowiak, M. Nowacka, P. M. Strozycki, and M. Figlerowicz (2011)
Nucleic Acids Res. 39, 7361-7370
   Abstract »    Full Text »    PDF »
RNS2, a conserved member of the RNase T2 family, is necessary for ribosomal RNA decay in plants.
M. S. Hillwig, A. L. Contento, A. Meyer, D. Ebany, D. C. Bassham, and G. C. MacIntosh (2011)
PNAS 108, 1093-1098
   Abstract »    Full Text »    PDF »
Endogenous siRNAs and noncoding RNA-derived small RNAs are expressed in adult mouse hippocampus and are up-regulated in olfactory discrimination training.
N. R. Smalheiser, G. Lugli, J. Thimmapuram, E. H. Cook, and J. Larson (2011)
RNA 17, 166-181
   Abstract »    Full Text »    PDF »
Determinants of eukaryal cell killing by the bacterial ribotoxin PrrC.
B. Meineke, B. Schwer, R. Schaffrath, and S. Shuman (2011)
Nucleic Acids Res. 39, 687-700
   Abstract »    Full Text »    PDF »
A growth-essential Tetrahymena Piwi protein carries tRNA fragment cargo.
M. T. Couvillion, R. Sachidanandam, and K. Collins (2010)
Genes & Dev. 24, 2742-2747
   Abstract »    Full Text »    PDF »
Novel endoribonucleases as central players in various pathways of eukaryotic RNA metabolism.
R. Tomecki and A. Dziembowski (2010)
RNA 16, 1692-1724
   Abstract »    Full Text »    PDF »
tRNA biology charges to the front.
E. M. Phizicky and A. K. Hopper (2010)
Genes & Dev. 24, 1832-1860
   Abstract »    Full Text »    PDF »
RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage.
M. Schaefer, T. Pollex, K. Hanna, F. Tuorto, M. Meusburger, M. Helm, and F. Lyko (2010)
Genes & Dev. 24, 1590-1595
   Abstract »    Full Text »    PDF »
Genome-wide analysis of N1-methyl-adenosine modification in human tRNAs.
M. Saikia, Y. Fu, M. Pavon-Eternod, C. He, and T. Pan (2010)
RNA 16, 1317-1327
   Abstract »    Full Text »    PDF »
RNPomics: Defining the ncRNA transcriptome by cDNA library generation from ribonucleo-protein particles.
M. Rederstorff, S. H. Bernhart, A. Tanzer, M. Zywicki, K. Perfler, M. Lukasser, I. L. Hofacker, and A. Huttenhofer (2010)
Nucleic Acids Res. 38, e113
   Abstract »    Full Text »    PDF »
eIF2{alpha} Phosphorylation Tips the Balance to Apoptosis during Osmotic Stress.
E. Bevilacqua, X. Wang, M. Majumder, F. Gaccioli, C. L. Yuan, C. Wang, X. Zhu, L. E. Jordan, D. Scheuner, R. J. Kaufman, et al. (2010)
J. Biol. Chem. 285, 17098-17111
   Abstract »    Full Text »    PDF »
Angiogenin-induced tRNA-derived Stress-induced RNAs Promote Stress-induced Stress Granule Assembly.
M. M. Emara, P. Ivanov, T. Hickman, N. Dawra, S. Tisdale, N. Kedersha, G.-F. Hu, and P. Anderson (2010)
J. Biol. Chem. 285, 10959-10968
   Abstract »    Full Text »    PDF »
'A life or death decision' for pollen tubes in S-RNase-based self-incompatibility.
G. Chen, B. Zhang, Z. Zhao, Z. Sui, H. Zhang, and Y. Xue (2010)
J. Exp. Bot. 61, 2027-2037
   Abstract »    Full Text »    PDF »
Capture and sequence analysis of RNAs with terminal 2',3'-cyclic phosphates.
K. Schutz, J. R. Hesselberth, and S. Fields (2010)
RNA 16, 621-631
   Abstract »    Full Text »    PDF »
Cross-mapping and the identification of editing sites in mature microRNAs in high-throughput sequencing libraries.
M. J.L. de Hoon, R. J. Taft, T. Hashimoto, M. Kanamori-Katayama, H. Kawaji, M. Kawano, M. Kishima, T. Lassmann, G. J. Faulkner, J. S. Mattick, et al. (2010)
Genome Res. 20, 257-264
   Abstract »    Full Text »    PDF »
Characterization of Viral and Human RNAs Smaller than Canonical MicroRNAs.
Z. Li, S. W. Kim, Y. Lin, P. S. Moore, Y. Chang, and B. John (2009)
J. Virol. 83, 12751-12758
   Abstract »    Full Text »    PDF »
A novel class of small RNAs: tRNA-derived RNA fragments (tRFs).
Y. S. Lee, Y. Shibata, A. Malhotra, and A. Dutta (2009)
Genes & Dev. 23, 2639-2649
   Abstract »    Full Text »    PDF »
Blood, stress, and tiRNAs.
R. Williams (2009)
J. Cell Biol. 185, 3
   Full Text »    PDF »
The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae.
D. M. Thompson and R. Parker (2009)
J. Cell Biol. 185, 43-50
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882