Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Cell Biol. 185 (1): 43-50

Copyright © 2009 by the Rockefeller University Press.


Report

The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae

Debrah M. Thompson, and Roy Parker

Department of Molecular and Cellular Biology, and Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721

Correspondence to R. Parker: rrparker{at}email.arizona.edu

Abstract: The cellular response to stress conditions involves a decision between survival or cell death when damage is severe. A conserved stress response in eukaryotes involves endonucleolytic cleavage of transfer RNAs (tRNAs). The mechanism and significance of such tRNA cleavage is unknown. We show that in yeast, tRNAs are cleaved by the RNase T2 family member Rny1p, which is released from the vacuole into the cytosol during oxidative stress. Rny1p modulates yeast cell survival during oxidative stress independently of its catalytic ability. This suggests that upon release to the cytosol, Rny1p promotes cell death by direct interactions with downstream components. Thus, detection of Rny1p, and possibly its orthologues, in the cytosol may be a conserved mechanism for assessing cellular damage and determining cell survival, analogous to the role of cytochrome c as a marker for mitochondrial damage.


Abbreviations used in this paper: Rny1p, RNase in Yeast 1; SCM, synthetic complete medium; WT, wild type.



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Transfer RNA Post-Transcriptional Processing, Turnover, and Subcellular Dynamics in the Yeast Saccharomyces cerevisiae.
A. K. Hopper (2013)
Genetics 194, 43-67
   Abstract »    Full Text »    PDF »
Degradation of initiator tRNAMet by Xrn1/2 via its accumulation in the nucleus of heat-treated HeLa cells.
K. Watanabe, R. Miyagawa, C. Tomikawa, R. Mizuno, A. Takahashi, H. Hori, and K. Ijiri (2013)
Nucleic Acids Res. 41, 4671-4685
   Abstract »    Full Text »    PDF »
A Comprehensive Expression Profile of MicroRNAs and Other Classes of Non-Coding Small RNAs in Barley Under Phosphorous-Deficient and -Sufficient Conditions.
M. Hackenberg, P.-J. Huang, C.-Y. Huang, B.-J. Shi, P. Gustafson, and P. Langridge (2013)
DNA Res 20, 109-125
   Abstract »    Full Text »    PDF »
Genome-wide Identification and Quantitative Analysis of Cleaved tRNA Fragments Induced by Cellular Stress.
M. Saikia, D. Krokowski, B.-J. Guan, P. Ivanov, M. Parisien, G.-f. Hu, P. Anderson, T. Pan, and M. Hatzoglou (2012)
J. Biol. Chem. 287, 42708-42725
   Abstract »    Full Text »    PDF »
Disorganization of F-actin cytoskeleton precedes vacuolar disruption in pollen tubes during the in vivo self-incompatibility response in Nicotiana alata.
J. A. Roldan, H. J. Rojas, and A. Goldraij (2012)
Ann. Bot. 110, 787-795
   Abstract »    Full Text »    PDF »
Extensive terminal and asymmetric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs.
Z. Li, C. Ender, G. Meister, P. S. Moore, Y. Chang, and B. John (2012)
Nucleic Acids Res. 40, 6787-6799
   Abstract »    Full Text »    PDF »
Metatranscriptomic Analysis of Microbes in an Oceanfront Deep-Subsurface Hot Spring Reveals Novel Small RNAs and Type-Specific tRNA Degradation.
S. Murakami, K. Fujishima, M. Tomita, and A. Kanai (2012)
Appl. Envir. Microbiol. 78, 1015-1022
   Abstract »    Full Text »    PDF »
Several RNase T2 enzymes function in induced tRNA and rRNA turnover in the ciliate Tetrahymena.
K. L. Andersen and K. Collins (2012)
Mol. Biol. Cell 23, 36-44
   Abstract »    Full Text »    PDF »
Age-associated changes in expression of small, noncoding RNAs, including microRNAs, in C. elegans.
M. Kato, X. Chen, S. Inukai, H. Zhao, and F. J. Slack (2011)
RNA 17, 1804-1820
   Abstract »    Full Text »    PDF »
RNA degradome--its biogenesis and functions.
P. Jackowiak, M. Nowacka, P. M. Strozycki, and M. Figlerowicz (2011)
Nucleic Acids Res. 39, 7361-7370
   Abstract »    Full Text »    PDF »
RNS2, a conserved member of the RNase T2 family, is necessary for ribosomal RNA decay in plants.
M. S. Hillwig, A. L. Contento, A. Meyer, D. Ebany, D. C. Bassham, and G. C. MacIntosh (2011)
PNAS 108, 1093-1098
   Abstract »    Full Text »    PDF »
Microenvironmental control of malignancy exerted by RNASET2, a widely conserved extracellular RNase.
F. Acquati, S. Bertilaccio, A. Grimaldi, L. Monti, R. Cinquetti, P. Bonetti, M. Lualdi, L. Vidalino, M. Fabbri, M. G. Sacco, et al. (2011)
PNAS 108, 1104-1109
   Abstract »    Full Text »    PDF »
Determinants of eukaryal cell killing by the bacterial ribotoxin PrrC.
B. Meineke, B. Schwer, R. Schaffrath, and S. Shuman (2011)
Nucleic Acids Res. 39, 687-700
   Abstract »    Full Text »    PDF »
A growth-essential Tetrahymena Piwi protein carries tRNA fragment cargo.
M. T. Couvillion, R. Sachidanandam, and K. Collins (2010)
Genes & Dev. 24, 2742-2747
   Abstract »    Full Text »    PDF »
tRNA biology charges to the front.
E. M. Phizicky and A. K. Hopper (2010)
Genes & Dev. 24, 1832-1860
   Abstract »    Full Text »    PDF »
Genome-wide analysis of N1-methyl-adenosine modification in human tRNAs.
M. Saikia, Y. Fu, M. Pavon-Eternod, C. He, and T. Pan (2010)
RNA 16, 1317-1327
   Abstract »    Full Text »    PDF »
Angiogenin-induced tRNA-derived Stress-induced RNAs Promote Stress-induced Stress Granule Assembly.
M. M. Emara, P. Ivanov, T. Hickman, N. Dawra, S. Tisdale, N. Kedersha, G.-F. Hu, and P. Anderson (2010)
J. Biol. Chem. 285, 10959-10968
   Abstract »    Full Text »    PDF »
'A life or death decision' for pollen tubes in S-RNase-based self-incompatibility.
G. Chen, B. Zhang, Z. Zhao, Z. Sui, H. Zhang, and Y. Xue (2010)
J. Exp. Bot. 61, 2027-2037
   Abstract »    Full Text »    PDF »
Capture and sequence analysis of RNAs with terminal 2',3'-cyclic phosphates.
K. Schutz, J. R. Hesselberth, and S. Fields (2010)
RNA 16, 621-631
   Abstract »    Full Text »    PDF »
Cross-mapping and the identification of editing sites in mature microRNAs in high-throughput sequencing libraries.
M. J.L. de Hoon, R. J. Taft, T. Hashimoto, M. Kanamori-Katayama, H. Kawaji, M. Kawano, M. Kishima, T. Lassmann, G. J. Faulkner, J. S. Mattick, et al. (2010)
Genome Res. 20, 257-264
   Abstract »    Full Text »    PDF »
A novel class of small RNAs: tRNA-derived RNA fragments (tRFs).
Y. S. Lee, Y. Shibata, A. Malhotra, and A. Dutta (2009)
Genes & Dev. 23, 2639-2649
   Abstract »    Full Text »    PDF »
Blood, stress, and tiRNAs.
R. Williams (2009)
J. Cell Biol. 185, 3
   Full Text »    PDF »
Angiogenin cleaves tRNA and promotes stress-induced translational repression.
S. Yamasaki, P. Ivanov, G.-f. Hu, and P. Anderson (2009)
J. Cell Biol. 185, 35-42
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882