Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Cell Biol. 198 (2): 251-263

Copyright © 2012 by the Rockefeller University Press.


Dynamic remodeling of scaffold interactions in dendritic spines controls synaptic excitability

Enora Moutin1,2,3,4, Fabrice Raynaud1,2,3,4, Jonathan Roger1,2,3,4, Emilie Pellegrino1,2,3,4, Vincent Homburger1,2,3,4, Federica Bertaso1,2,3,4, Vincent Ollendorff5, Joël Bockaert1,2,3,4, Laurent Fagni1,2,3,4, , and Julie Perroy1,2,3,4

1 Centre national de la recherche scientifique, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, Cedex 16, France
2 Institut National de la Santé et de la Recherche Médicale, U661, F-34000 Montpellier, Cedex 13, France
3 Université de Montpellier 1, UMR-5203, 34967 Montpellier, Cedex 02, France
4 Université de Montpellier 2, 34095 Montpellier, Cedex 05, France
5 UMR866 Dynamique Musculaire et Métabolisme, Institut National de la Recherche Agronomique, 34060 Montpellier, Cedex 01, France

Correspondence to Julie Perroy: julie.perroy{at}

Abstract: Scaffolding proteins interact with membrane receptors to control signaling pathways and cellular functions. However, the dynamics and specific roles of interactions between different components of scaffold complexes are poorly understood because of the dearth of methods available to monitor binding interactions. Using a unique combination of single-cell bioluminescence resonance energy transfer imaging in living neurons and electrophysiological recordings, in this paper, we depict the role of glutamate receptor scaffold complex remodeling in space and time to control synaptic transmission. Despite a broad colocalization of the proteins in neurons, we show that spine-confined assembly/disassembly of this scaffold complex, physiologically triggered by sustained activation of synaptic NMDA (N-methyl-D-aspartate) receptors, induces physical association between ionotropic (NMDA) and metabotropic (mGlu5a) synaptic glutamate receptors. This physical interaction results in an mGlu5a receptor–mediated inhibition of NMDA currents, providing an activity-dependent negative feedback loop on NMDA receptor activity. Such protein scaffold remodeling represents a form of homeostatic control of synaptic excitability.

Abbreviations: BRET, bioluminescence resonance energy transfer • DHPG, dihydroxyphenylglycine • GKAP, guanylate kinase–associated protein • LTP, long-term potentiation • mEPSC, miniature excitatory postsynaptic current • NTA, nitrilotriacetic acid • shRNA, short hairpin RNA

Type 1 metabotropic glutamate receptors (mGlu1) trigger the gating of GluD2 delta glutamate receptors.
V. Ady, J. Perroy, L. Tricoire, C. Piochon, S. Dadak, X. Chen, I. Dusart, L. Fagni, B. Lambolez, and C. Levenes (2014)
EMBO Rep. 15, 103-109
   Abstract »    Full Text »    PDF »
Optical control of an ion channel gate.
D. Lemoine, C. Habermacher, A. Martz, P.-F. Mery, N. Bouquier, F. Diverchy, A. Taly, F. Rassendren, A. Specht, and T. Grutter (2013)
PNAS 110, 20813-20818
   Abstract »    Full Text »    PDF »
NMDA Receptor Activation and Calpain Contribute to Disruption of Dendritic Spines by the Stress Neuropeptide CRH.
A. L. Andres, L. Regev, L. Phi, R. R. Seese, Y. Chen, C. M. Gall, and T. Z. Baram (2013)
J. Neurosci. 33, 16945-16960
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882