Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Exp. Med. 204 (9): 2063-2074

Copyright © 2007 by the Rockefeller University Press.


MyD88-5 links mitochondria, microtubules, and JNK3 in neurons and regulates neuronal survival

Younghwa Kim1, Ping Zhou2, Liping Qian2, Jen-Zen Chuang3, Jessica Lee1, Chenjian Li2, Costantino Iadecola2, Carl Nathan1, , and Aihao Ding1

1 Department of Microbiology and Immunology, 2 Division of Neurobiology, Department of Neurology and Neuroscience, and 3 Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY 10021

CORRESPONDENCE Aihao Ding: ahding{at}

Abstract: The innate immune system relies on evolutionally conserved Toll-like receptors (TLRs) to recognize diverse microbial molecular structures. Most TLRs depend on a family of adaptor proteins termed MyD88s to transduce their signals. Critical roles of MyD88-1–4 in host defense were demonstrated by defective immune responses in knockout mice. In contrast, the sites of expression and functions of vertebrate MyD88-5 have remained elusive. We show that MyD88-5 is distinct from other MyD88s in that MyD88-5 is preferentially expressed in neurons, colocalizes in part with mitochondria and JNK3, and regulates neuronal death. We prepared MyD88-5/GFP transgenic mice via a bacterial artificial chromosome to preserve its endogenous expression pattern. MyD88-5/GFP was detected chiefly in the brain, where it associated with punctate structures within neurons and copurified in part with mitochondria. In vitro, MyD88-5 coimmunoprecipitated with JNK3 and recruited JNK3 from cytosol to mitochondria. Hippocampal neurons from MyD88-5–deficient mice were protected from death after deprivation of oxygen and glucose. In contrast, MyD88-5–null macrophages behaved like wild-type cells in their response to microbial products. Thus, MyD88-5 appears unique among MyD88s in functioning to mediate stress-induced neuronal toxicity.

Abbreviations used: BAC, bacterial artificial chromosome; MAL, MyD88 adaptor–like; OGD, oxygen and glucose deprivation; PI, propidium iodide; RFP, red fluorescent protein; SAM, sterile {alpha} motif ; SARM, sterile {alpha} and HEAT/Armadillo motifs containing protein; TICAM, TIR domain–containing adaptor molecule; TIR, Toll-interleukin 1 receptor; TIRAP, TIR domain–containing adaptor protein; TIRP, TIR domain–containing protein; TLR, Toll-like receptor; TRAM, TRIF-related adaptor molecule; TRIF, TIR-domain containing adaptor inducing interferon-β.

C. Nathan and A. Ding contributed equally to this paper.

Neuronally-expressed Sarm1 regulates expression of inflammatory and antiviral cytokines in brains.
C.-W. Lin, H.-Y. Liu, C.-Y. Chen, and Y.-P. Hsueh (2014)
Innate Immunity 20, 161-172
   Abstract »    Full Text »    PDF »
SARM1 and TRAF6 bind to and stabilize PINK1 on depolarized mitochondria.
H. Murata, M. Sakaguchi, K. Kataoka, and N.-h. Huh (2013)
Mol. Biol. Cell 24, 2772-2784
   Abstract »    Full Text »    PDF »
Sarm1-Mediated Axon Degeneration Requires Both SAM and TIR Interactions.
J. Gerdts, D. W. Summers, Y. Sasaki, A. DiAntonio, and J. Milbrandt (2013)
J. Neurosci. 33, 13569-13580
   Abstract »    Full Text »    PDF »
SARM Is Required for Neuronal Injury and Cytokine Production in Response to Central Nervous System Viral Infection.
Y.-J. Hou, R. Banerjee, B. Thomas, C. Nathan, A. Garcia-Sastre, A. Ding, and M. B. Uccellini (2013)
J. Immunol. 191, 875-883
   Abstract »    Full Text »    PDF »
dSarm/Sarm1 Is Required for Activation of an Injury-Induced Axon Death Pathway.
J. M. Osterloh, J. Yang, T. M. Rooney, A. N. Fox, R. Adalbert, E. H. Powell, A. E. Sheehan, M. A. Avery, R. Hackett, M. A. Logan, et al. (2012)
Science 337, 481-484
   Abstract »    Full Text »    PDF »
Brain-specific interleukin-1 receptor accessory protein in sleep regulation.
P. Taishi, C. J. Davis, O. Bayomy, M. R. Zielinski, F. Liao, J. M. Clinton, D. E. Smith, and J. M. Krueger (2012)
J Appl Physiol 112, 1015-1022
   Abstract »    Full Text »    PDF »
Prohibitin Reduces Mitochondrial Free Radical Production and Protects Brain Cells from Different Injury Modalities.
P. Zhou, L. Qian, M. D'Aurelio, S. Cho, G. Wang, G. Manfredi, V. Pickel, and C. Iadecola (2012)
J. Neurosci. 32, 583-592
   Abstract »    Full Text »    PDF »
Evolution of the TIR Domain-Containing Adaptors in Humans: Swinging between Constraint and Adaptation.
S. Fornarino, G. Laval, L. B. Barreiro, J. Manry, E. Vasseur, and L. Quintana-Murci (2011)
Mol. Biol. Evol. 28, 3087-3097
   Abstract »    Full Text »    PDF »
Microtubule-based localization of a synaptic calcium-signaling complex is required for left-right neuronal asymmetry in C. elegans.
C. Chang, Y.-W. Hsieh, B. J. Lesch, C. I. Bargmann, and C.-F. Chuang (2011)
Development 138, 3509-3518
   Abstract »    Full Text »    PDF »
Sarm1, a negative regulator of innate immunity, interacts with syndecan-2 and regulates neuronal morphology.
C.-Y. Chen, C.-W. Lin, C.-Y. Chang, S.-T. Jiang, and Y.-P. Hsueh (2011)
J. Cell Biol. 193, 769-784
   Abstract »    Full Text »    PDF »
The Na/K-ATPase is obligatory for membrane anchorage of retinoschisin, the protein involved in the pathogenesis of X-linked juvenile retinoschisis.
U. Friedrich, H. Stohr, D. Hilfinger, T. Loenhardt, M. Schachner, T. Langmann, and B. H. F. Weber (2011)
Hum. Mol. Genet. 20, 1132-1142
   Abstract »    Full Text »    PDF »
Endotoxin Tolerance Impairs IL-1 Receptor-Associated Kinase (IRAK) 4 and TGF-{beta}-activated Kinase 1 Activation, K63-linked Polyubiquitination and Assembly of IRAK1, TNF Receptor-associated Factor 6, and I{kappa}B Kinase {gamma} and Increases A20 Expression.
Y. Xiong, F. Qiu, W. Piao, C. Song, L. M. Wahl, and A. E. Medvedev (2011)
J. Biol. Chem. 286, 7905-7916
   Abstract »    Full Text »    PDF »
Amphioxus SARM Involved in Neural Development May Function as a Suppressor of TLR Signaling.
S. Yuan, K. Wu, M. Yang, L. Xu, L. Huang, H. Liu, X. Tao, S. Huang, and A. Xu (2010)
J. Immunol. 184, 6874-6881
   Abstract »    Full Text »    PDF »
Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice.
F. Yin, R. Banerjee, B. Thomas, P. Zhou, L. Qian, T. Jia, X. Ma, Y. Ma, C. Iadecola, M. F. Beal, et al. (2010)
J. Exp. Med. 207, 117-128
   Abstract »    Full Text »    PDF »
Siglec-E Is Up-Regulated and Phosphorylated Following Lipopolysaccharide Stimulation in Order to Limit TLR-Driven Cytokine Production.
C. R. Boyd, S. J. Orr, S. Spence, J. F. Burrows, J. Elliott, H. P. Carroll, K. Brennan, J. N. Gabhann, W. A. Coulter, J. A. Johnston, et al. (2009)
J. Immunol. 183, 7703-7709
   Abstract »    Full Text »    PDF »
The Immune Adaptor Molecule SARM Modulates Tumor Necrosis Factor Alpha Production and Microglia Activation in the Brainstem and Restricts West Nile Virus Pathogenesis.
K. J. Szretter, M. A. Samuel, S. Gilfillan, A. Fuchs, M. Colonna, and M. S. Diamond (2009)
J. Virol. 83, 9329-9338
   Abstract »    Full Text »    PDF »
Pathogen Recognition and Inflammatory Signaling in Innate Immune Defenses.
T. H. Mogensen (2009)
Clin. Microbiol. Rev. 22, 240-273
   Abstract »    Full Text »    PDF »
Studying host-pathogen interactions and innate immunity in Caenorhabditis elegans.
D. Kim (2008)
Dis. Model. Mech. 1, 205-208
   Abstract »    Full Text »    PDF »
Studies of SARM1 Uncover Similarities Between Immune and Neuronal Responses to Danger.
M. Dalod (2007)
Sci. STKE 2007, pe73
   Abstract »    Full Text »    PDF »
MyD88-5 links mitochondria, microtubules, and JNK3 in neurons and regulates neuronal survival.
Y. Kim, P. Zhou, L. Qian, J.-Z. Chuang, J. Lee, C. Li, C. Iadecola, C. Nathan, and A. Ding (2007)
J. Cell Biol. 178, i12
   Full Text »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882