Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Exp. Med. 206 (11): 2455-2467

Copyright © 2009 by the Rockefeller University Press.


Mast cell–derived particles deliver peripheral signals to remote lymph nodes

Christian A. Kunder1, Ashley L. St. John2, Guojie Li1, Kam W. Leong3, Brent Berwin6, Herman F. Staats1,2,4, , and Soman N. Abraham1,2,5,7

1 Department of Pathology, 2 Department of Immunology, 3 Department of Biomedical Engineering, 4 Department of Medicine, and 5 Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
6 Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03755
7 Duke–National University of Singapore, Graduate Medical School, Singapore 169857

CORRESPONDENCE Soman N. Abraham: soman.abraham{at}

Abstract: During infection, signals from the periphery are known to reach draining lymph nodes (DLNs), but how these molecules, such as inflammatory cytokines, traverse the significant distances involved without dilution or degradation remains unclear. We show that peripheral mast cells, upon activation, release stable submicrometer heparin-based particles containing tumor necrosis factor and other proteins. These complexes enter lymphatic vessels and rapidly traffic to the DLNs. This physiological drug delivery system facilitates communication between peripheral sites of inflammation and remote secondary lymphoid tissues.

C.A. Kunder and A.L. St. John contributed equally to this paper.

Abbreviations: BMMC, BM-derived MC • DLN, draining LN • HEV, high endothelial venule • MC, mast cell • SEM, scanning electron micrograph

p66Shc regulates vesicle-mediated secretion in mast cells by affecting F-actin dynamics.
G. Masi, D. Mercati, E. Vannuccini, E. Paccagnini, M. G. Riparbelli, P. Lupetti, P. G. Pelicci, C. T. Baldari, and C. Ulivieri (2014)
J. Leukoc. Biol. 95, 285-292
   Abstract »    Full Text »    PDF »
Microparticle alpha-2-macroglobulin enhances pro-resolving responses and promotes survival in sepsis.
J. Dalli, L. V. Norling, T. Montero-Melendez, D. F. Canova, H. Lashin, A. M. Pavlov, G. B. Sukhorukov, C. J. Hinds, and M. Perretti (2014)
EMBO Mol Med. 6, 27-42
   Abstract »    Full Text »    PDF »
Heterogeneity in Neutrophil Microparticles Reveals Distinct Proteome and Functional Properties.
J. Dalli, T. Montero-Melendez, L. V. Norling, X. Yin, C. Hinds, D. Haskard, M. Mayr, and M. Perretti (2013)
Mol. Cell. Proteomics 12, 2205-2219
   Abstract »    Full Text »    PDF »
Mechanisms of Granule Membrane Recapture following Exocytosis in Intact Mast Cells.
J. M. Cabeza, J. Acosta, and E. Ales (2013)
J. Biol. Chem. 288, 20293-20305
   Abstract »    Full Text »    PDF »
Innate Immunity and Its Regulation by Mast Cells.
A. L. St. John and S. N. Abraham (2013)
J. Immunol. 190, 4458-4463
   Abstract »    Full Text »    PDF »
Interplay between Mast Cells and Lymphatic Vessels in Different Molecular Types of Breast Cancer.
Anticancer Res 33, 957-963
   Abstract »    Full Text »    PDF »
The FcR{beta}- and {gamma}-ITAMs Play Crucial but Distinct Roles in the Full Activation of Mast Cells Induced by IgE{kappa} and Protein L.
S. Nunomura, Y. Kawakami, T. Kawakami, and C. Ra (2012)
J. Immunol. 188, 4052-4064
   Abstract »    Full Text »    PDF »
Coordinated Regulation of Lymph Node Vascular-Stromal Growth First by CD11c+ Cells and Then by T and B Cells.
S. Chyou, F. Benahmed, J. Chen, V. Kumar, S. Tian, M. Lipp, and T. T. Lu (2011)
J. Immunol. 187, 5558-5567
   Abstract »    Full Text »    PDF »
Mast cell modulation of the vascular and lymphatic endothelium.
C. A. Kunder, A. L. St John, and S. N. Abraham (2011)
Blood 118, 5383-5393
   Abstract »    Full Text »    PDF »
Serglycin: A Structural and Functional Chameleon with Wide Impact on Immune Cells.
S. O. Kolset and G. Pejler (2011)
J. Immunol. 187, 4927-4933
   Abstract »    Full Text »    PDF »
Systemic mast cell degranulation increases mortality during polymicrobial septic peritonitis in mice.
E. J. Seeley, R. E. Sutherland, S. S. Kim, and P. J. Wolters (2011)
J. Leukoc. Biol. 90, 591-597
   Abstract »    Full Text »    PDF »
LIGHT Regulates Inflamed Draining Lymph Node Hypertrophy.
M. Zhu, Y. Yang, Y. Wang, Z. Wang, and Y.-X. Fu (2011)
J. Immunol. 186, 7156-7163
   Abstract »    Full Text »    PDF »
p66Shc Is a Negative Regulator of Fc{varepsilon}RI-Dependent Signaling in Mast Cells.
C. Ulivieri, D. Fanigliulo, G. Masi, M. T. Savino, A. Gamberucci, P. G. Pelicci, and C. T. Baldari (2011)
J. Immunol. 186, 5095-5106
   Abstract »    Full Text »    PDF »
Mast Cell-Derived IL-10 Suppresses Germinal Center Formation by Affecting T Follicular Helper Cell Function.
R. Chacon-Salinas, A. Y. Limon-Flores, A. D. Chavez-Blanco, A. Gonzalez-Estrada, and S. E. Ullrich (2011)
J. Immunol. 186, 25-31
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882