Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Neurosci. 26 (49): 12826-12837

Copyright © 2006 by the Society for Neuroscience.


Toll-Like Receptor 2 Signaling in Response to Brain Injury: An Innate Bridge to Neuroinflammation

Alicia A. Babcock,1,2 Martin Wirenfeldt,1 Thomas Holm,1 Helle H. Nielsen,1 Lasse Dissing-Olesen,1 Henrik Toft-Hansen,1,2 Jason M. Millward,2 Regine Landmann,3 Serge Rivest,4 Bente Finsen,1 , and Trevor Owens1,2

1Medical Biotechnology Center, University of Southern Denmark, 5000 Odense C, Denmark, 2Neuroimmunology Unit, Montreal Neurological Institute, Montreal, Quebec, Canada H3A 2B4, 3Division of Infectious Diseases, Department of Research, University Hospital, 4031 Basel, Switzerland, and 4Laboratory of Molecular Endocrinology, Centre Hospitalier Université Laval Research Center, and Department of Anatomy and Physiology, Laval University, Quebec, Quebec, Canada G1V 4G2

Correspondence should be addressed to Trevor Owens, Medical Biotechnology Center, University of Southern Denmark, Winsloewparken 25, 2 5000 Odense C, Denmark. Email: towens{at}

Abstract: Reactive gliosis is a prominent feature of neurodegenerative and neuroinflammatory disease in the CNS, yet the stimuli that drive this response are not known. There is growing appreciation that signaling through Toll-like receptors (TLRs), which is key to generating innate responses to infection, may have pathogen-independent roles. We show that TLR2 was selectively upregulated by microglia in the denervated zones of the hippocampus in response to stereotactic transection of axons in the entorhinal cortex. In mice lacking TLR2, there were transient, selective reductions in lesion-induced expression of cytokines and chemokines. Recruitment of T cells, but not macrophages, was delayed in TLR2-deficient mice, as well as in mice lacking TNFR1 (tumor necrosis factor receptor 1). TLR2 deficiency also affected microglial proliferative expansion, whereas all of these events were unaffected in TLR4-mutant mice. Consistent with the fact that responses in knock-out mice had all returned to wild-type levels by 8 d, there was no evidence for effects on neuronal plasticity at 20 d. These results identify a role for TLR2 signaling in the early glial response to brain injury, acting as an innate bridge to neuroinflammation.

Key Words: hippocampus • neuroinflammation • axotomy • cytokines • chemokines • microglia • leukocytes

Received for publication July 11, 2005. Revision received Sept. 14, 2006. Accepted for publication Oct. 30, 2006.

Correspondence should be addressed to Trevor Owens, Medical Biotechnology Center, University of Southern Denmark, Winsloewparken 25, 2 5000 Odense C, Denmark. Email: towens{at}

TLR2 & Co: a critical analysis of the complex interactions between TLR2 and coreceptors.
J. van Bergenhenegouwen, T. S. Plantinga, L. A. B. Joosten, M. G. Netea, G. Folkerts, A. D. Kraneveld, J. Garssen, and A. P. Vos (2013)
J. Leukoc. Biol. 94, 885-902
   Abstract »    Full Text »    PDF »
Extracellularly Delivered Single-Stranded Viral RNA Causes Neurodegeneration Dependent on TLR7.
S. M. Lehmann, K. Rosenberger, C. Kruger, P. Habbel, K. Derkow, D. Kaul, A. Rybak, C. Brandt, E. Schott, F. G. Wulczyn, et al. (2012)
J. Immunol. 189, 1448-1458
   Abstract »    Full Text »    PDF »
TLR2 Is a Primary Receptor for Alzheimer's Amyloid {beta} Peptide To Trigger Neuroinflammatory Activation.
S. Liu, Y. Liu, W. Hao, L. Wolf, A. J. Kiliaan, B. Penke, C. E. Rube, J. Walter, M. T. Heneka, T. Hartmann, et al. (2012)
J. Immunol. 188, 1098-1107
   Abstract »    Full Text »    PDF »
Inhibition of Microglial Phagocytosis Is Sufficient To Prevent Inflammatory Neuronal Death.
J. J. Neher, U. Neniskyte, J.-W. Zhao, A. Bal-Price, A. M. Tolkovsky, and G. C. Brown (2011)
J. Immunol. 186, 4973-4983
   Abstract »    Full Text »    PDF »
Physiology of Microglia.
H. Kettenmann, U.-K. Hanisch, M. Noda, and A. Verkhratsky (2011)
Physiol Rev 91, 461-553
   Abstract »    Full Text »    PDF »
Activation of toll-like receptor, RAGE and HMGB1 signalling in malformations of cortical development.
E. Zurolo, A. Iyer, M. Maroso, C. Carbonell, J. J. Anink, T. Ravizza, K. Fluiter, W. G. M. Spliet, P. C. van Rijen, A. Vezzani, et al. (2011)
Brain 134, 1015-1032
   Abstract »    Full Text »    PDF »
Microglial Toll-like Receptor 2 Contributes to Kainic Acid-induced Glial Activation and Hippocampal Neuronal Cell Death.
J. Hong, I.-H. Cho, K. Il Kwak, E. C. Suh, J. Seo, H. J. Min, S.-Y. Choi, C.-H. Kim, S. H. Park, E.-K. Jo, et al. (2010)
J. Biol. Chem. 285, 39447-39457
   Abstract »    Full Text »    PDF »
Induction of Toll-Like Receptor 3-Mediated Immunity during Gestation Inhibits Cortical Neurogenesis and Causes Behavioral Disturbances.
J. De Miranda, K. Yaddanapudi, M. Hornig, G. Villar, R. Serge, and W. I. Lipkin (2010)
mBio 1, e00176-10
   Abstract »    Full Text »    PDF »
Injury-Induced Type I IFN Signaling Regulates Inflammatory Responses in the Central Nervous System.
R. Khorooshi and T. Owens (2010)
J. Immunol. 185, 1258-1264
   Abstract »    Full Text »    PDF »
Oligonucleotide array analysis of Toll-like receptors and associated signalling genes in Venezuelan equine encephalitis virus-infected mouse brain.
A. Sharma and R. K. Maheshwari (2009)
J. Gen. Virol. 90, 1836-1847
   Abstract »    Full Text »    PDF »
Macrophages Promote Axon Regeneration with Concurrent Neurotoxicity.
J. C. Gensel, S. Nakamura, Z. Guan, N. van Rooijen, D. P. Ankeny, and P. G. Popovich (2009)
J. Neurosci. 29, 3956-3968
   Abstract »    Full Text »    PDF »
Microglia Protect Neurons against Ischemia by Synthesis of Tumor Necrosis Factor.
K. L. Lambertsen, B. H. Clausen, A. A. Babcock, R. Gregersen, C. Fenger, H. H. Nielsen, L. S. Haugaard, M. Wirenfeldt, M. Nielsen, F. Dagnaes-Hansen, et al. (2009)
J. Neurosci. 29, 1319-1330
   Abstract »    Full Text »    PDF »
Toll-Like Receptor 3 Is a Negative Regulator of Embryonic Neural Progenitor Cell Proliferation.
J. D. Lathia, E. Okun, S.-C. Tang, K. Griffioen, A. Cheng, M. R. Mughal, G. Laryea, P. K. Selvaraj, C. ffrench-Constant, T. Magnus, et al. (2008)
J. Neurosci. 28, 13978-13984
   Abstract »    Full Text »    PDF »
NF-{kappa}B-Driven STAT2 and CCL2 Expression in Astrocytes in Response to Brain Injury.
R. Khorooshi, A. A. Babcock, and T. Owens (2008)
J. Immunol. 181, 7284-7291
   Abstract »    Full Text »    PDF »
Signaling through MyD88 Regulates Leukocyte Recruitment after Brain Injury.
A. A. Babcock, H. Toft-Hansen, and T. Owens (2008)
J. Immunol. 181, 6481-6490
   Abstract »    Full Text »    PDF »
A Vicious Cycle Involving Release of Heat Shock Protein 60 from Injured Cells and Activation of Toll-Like Receptor 4 Mediates Neurodegeneration in the CNS.
S. Lehnardt, E. Schott, T. Trimbuch, D. Laubisch, C. Krueger, G. Wulczyn, R. Nitsch, and J. R. Weber (2008)
J. Neurosci. 28, 2320-2331
   Abstract »    Full Text »    PDF »
Toll-Like Receptor Signaling Is Critical for Wallerian Degeneration and Functional Recovery after Peripheral Nerve Injury.
A. Boivin, I. Pineau, B. Barrette, M. Filali, N. Vallieres, S. Rivest, and S. Lacroix (2007)
J. Neurosci. 27, 12565-12576
   Abstract »    Full Text »    PDF »
Toll-Like Receptors in Brain Development and Homeostasis.
P. H. Larsen, T. H. Holm, and T. Owens (2007)
Sci. STKE 2007, pe47
   Abstract »    Full Text »    PDF »
A Critical Role of Toll-like Receptor 2 in Nerve Injury-induced Spinal Cord Glial Cell Activation and Pain Hypersensitivity.
D. Kim, M. A. Kim, I.-H. Cho, M. S. Kim, S. Lee, E.-K. Jo, S.-Y. Choi, K. Park, J. S. Kim, S. Akira, et al. (2007)
J. Biol. Chem. 282, 14975-14983
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882