Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Neurosci. 27 (46): 12577-12583

Copyright © 2007 by the Society for Neuroscience.


Molecular Mechanisms of Subtype-Specific Inhibition of Neuronal T-Type Calcium Channels by Ascorbate

Michael T. Nelson,1,4 Pavle M. Joksovic,1 Peihan Su,1,4 Ho-Won Kang,6,7 Amy Van Deusen,2 Joel P. Baumgart,2,4 Laurence S. David,5 Terrance P. Snutch,5 Paula Q. Barrett,2 Jung-Ha Lee,6,7 Charles F. Zorumski,8 Edward Perez-Reyes,2,4 , and Slobodan M. Todorovic1,3,4

Departments of 1Anesthesiology, 2Pharmacology, 3Neuroscience, and 4Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, Virginia 22908, 5Michael Smith Laboratories, University of British Columbia, Vancouver British Columbia, Canada V6T 1Z4, 6Department of Life Science and 7Interdisciplinary Program of Biotechnology, Sogang University, Shinsu-Dong, Seoul 121-742, Korea, and 8Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63130

Correspondence should be addressed to Slobodan M. Todorovic, Department of Anesthesiology, University of Virginia Health System, Box 800710, Charlottesville, VA 22908. Email: st9d{at}

Abstract: T-type Ca2+ channels (T-channels) are involved in the control of neuronal excitability and their gating can be modulated by a variety of redox agents. Ascorbate is an endogenous redox agent that can function as both an anti- and pro-oxidant. Here, we show that ascorbate selectively inhibits native Cav3.2 T-channels in peripheral and central neurons, as well as recombinant Cav3.2 channels heterologously expressed in human embryonic kidney 293 cells, by initiating the metal-catalyzed oxidation of a specific, metal-binding histidine residue in domain 1 of the channel. Our biophysical experiments indicate that ascorbate reduces the availability of Cav3.2 channels over a wide range of membrane potentials, and inhibits Cav3.2-dependent low-threshold-Ca2+ spikes as well as burst-firing in reticular thalamic neurons at physiologically relevant concentrations. This study represents the first mechanistic demonstration of ion channel modulation by ascorbate, and suggests that ascorbate may function as an endogenous modulator of neuronal excitability.

Key Words: ascorbic • calcium current • dorsal root ganglion • DRG • low-threshold calcium channel • oxidation • thalamus

Received for publication May 14, 2007. Revision received Oct. 1, 2007. Accepted for publication Oct. 4, 2007.

Correspondence should be addressed to Slobodan M. Todorovic, Department of Anesthesiology, University of Virginia Health System, Box 800710, Charlottesville, VA 22908. Email: st9d{at}

Carbon monoxide inhibition of Cav3.2 T-type Ca2+ channels reveals tonic modulation by thioredoxin.
H. E. Boycott, M. L. Dallas, J. Elies, L. Pettinger, J. P. Boyle, J. L. Scragg, N. Gamper, and C. Peers (2013)
FASEB J 27, 3395-3407
   Abstract »    Full Text »    PDF »
Presynaptic CaV3.2 Channels Regulate Excitatory Neurotransmission in Nociceptive Dorsal Horn Neurons.
M. O. Jacus, V. N. Uebele, J. J. Renger, and S. M. Todorovic (2012)
J. Neurosci. 32, 9374-9382
   Abstract »    Full Text »    PDF »
Molecular and biophysical basis of glutamate and trace metal modulation of voltage-gated Cav2.3 calcium channels.
A. Shcheglovitov, I. Vitko, R. M. Lazarenko, P. Orestes, S. M. Todorovic, and E. Perez-Reyes (2012)
J. Gen. Physiol. 139, 219-234
   Abstract »    Full Text »    PDF »
Allosteric Modulation of Retinal GABA Receptors by Ascorbic Acid.
C. I. Calero, E. Vickers, G. Moraga Cid, L. G. Aguayo, H. von Gersdorff, and D. J. Calvo (2011)
J. Neurosci. 31, 9672-9682
   Abstract »    Full Text »    PDF »
The Cav3.2 T-type calcium channel regulates temporal coding in mouse mechanoreceptors.
R. Wang and G. R. Lewin (2011)
J. Physiol. 589, 2229-2243
   Abstract »    Full Text »    PDF »
Disrupted Thalamic T-Type Ca2+ Channel Expression and Function During Ethanol Exposure and Withdrawal.
J. D. Graef, T. W. Huitt, B. K. Nordskog, J. H. Hammarback, and D. W. Godwin (2011)
J Neurophysiol 105, 528-540
   Abstract »    Full Text »    PDF »
Free radical signalling underlies inhibition of CaV3.2 T-type calcium channels by nitrous oxide in the pain pathway.
P. Orestes, D. Bojadzic, J. Lee, E. Leach, R. Salajegheh, M. R. DiGruccio, M. T. Nelson, and S. M. Todorovic (2011)
J. Physiol. 589, 135-148
   Abstract »    Full Text »    PDF »
CCR2 Receptor Ligands Inhibit Cav3.2 T-Type Calcium Channels.
H. You, C. Altier, and G. W Zamponi (2010)
Mol. Pharmacol. 77, 211-217
   Abstract »    Full Text »    PDF »
Structural Determinants of the High Affinity Extracellular Zinc Binding Site on Cav3.2 T-type Calcium Channels.
H.-W. Kang, I. Vitko, S.-S. Lee, E. Perez-Reyes, and J.-H. Lee (2010)
J. Biol. Chem. 285, 3271-3281
   Abstract »    Full Text »    PDF »
T-Type Calcium Channel Inhibition Underlies the Analgesic Effects of the Endogenous Lipoamino Acids.
G. Barbara, A. Alloui, J. Nargeot, P. Lory, A. Eschalier, E. Bourinet, and J. Chemin (2009)
J. Neurosci. 29, 13106-13114
   Abstract »    Full Text »    PDF »
Molecular Mechanisms of Lipoic Acid Modulation of T-Type Calcium Channels in Pain Pathway.
W. Y. Lee, P. Orestes, J. Latham, A. K. Naik, M. T. Nelson, I. Vitko, E. Perez-Reyes, V. Jevtovic-Todorovic, and S. M. Todorovic (2009)
J. Neurosci. 29, 9500-9509
   Abstract »    Full Text »    PDF »
An Acquired Channelopathy Involving Thalamic T-Type Ca2+ Channels after Status Epilepticus.
J. D. Graef, B. K. Nordskog, W. F. Wiggins, and D. W. Godwin (2009)
J. Neurosci. 29, 4430-4441
   Abstract »    Full Text »    PDF »
An Extracellular Cu2+ Binding Site in the Voltage Sensor of BK and Shaker Potassium Channels.
Z. Ma, K. Y. Wong, and F. T. Horrigan (2008)
J. Gen. Physiol. 131, 483-502
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882