Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Cell Sci. 117 (26): 6497-6509

Research Article

In vivo analysis of 3-phosphoinositide dynamics during Dictyostelium phagocytosis and chemotaxis

Dirk Dormann1, Gerti Weijer1, Simon Dowler2, and Cornelis J. Weijer1,*

1 Division of Cell and Developmental Biology, MSI/WTB Complex, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
2 BioFocus Limited, Milton Road, Cambridge, CB4 0FG, UK

* Author for correspondence (e-mail: c.j.weijer{at}

Accepted for publication 5 October 2004.

Abstract: Phagocytosis and chemotaxis are receptor-mediated processes that require extensive rearrangements of the actin cytoskeleton, and are controlled by lipid second messengers such as phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] and phosphatidylinositol 3,4-bisphosphate [PtdIns(3,4)P2]. We used a panel of pleckstrin homology (PH) domains with distinct binding specificities for PtdIns(3,4,5)P3 and PtdIns(3,4)P2 to study the spatiotemporal dynamics of these phosphoinositides in vivo. During phagocytosis and macropinocytosis PtdIns(3,4,5)P3 levels transiently increased at sites of engulfment, followed by a rapid PtdIns(3,4)P2 production round the phagosome/macropinosome upon its internalisation, suggesting that PtdIns(3,4,5)P3 is degraded to PtdIns(3,4)P2. PTEN null mutants, which are defective in phagocytosis, showed normal rates of PtdIns(3,4,5)P3degradation, but unexpectedly an accelerated PtdIns(3,4)P2 degradation. During chemotaxis to cAMP only PtdIns(3,4,5)P3 was formed in the plasma membrane, and no PtdIns(3,4)P2 was detectable, showing that all PtdIns(3,4,5)P3 was degraded by PTEN to PtdIns(4,5)P2. Furthermore, we showed that different PtdIns(3,4,5)P3 binding PH domains gave distinct spatial and temporal readouts of the same underlying PtdIns(3,4,5)P3 signal, enabling distinct biological responses to one signal.

Key Words: Phagocytosis • Chemotaxis • Phosphoinositide • PH domain • Imaging

Bleb-driven chemotaxis of Dictyostelium cells.
E. Zatulovskiy, R. Tyson, T. Bretschneider, and R. R. Kay (2014)
J. Cell Biol. 204, 1027-1044
   Abstract »    Full Text »    PDF »
PIP3-dependent macropinocytosis is incompatible with chemotaxis.
D. M. Veltman, M. G. Lemieux, D. A. Knecht, and R. H. Insall (2014)
J. Cell Biol. 204, 497-505
   Abstract »    Full Text »    PDF »
The noodle defense.
J. A. Swanson (2013)
J. Cell Biol. 203, 871-873
   Abstract »    Full Text »    PDF »
Two distinct functions for PI3-kinases in macropinocytosis.
O. Hoeller, P. Bolourani, J. Clark, L. R. Stephens, P. T. Hawkins, O. D. Weiner, G. Weeks, and R. R. Kay (2013)
J. Cell Sci. 126, 4296-4307
   Abstract »    Full Text »    PDF »
Aeromonas salmonicida Ati2 is an effector protein of the type three secretion system.
S. Dallaire-Dufresne, X. Barbeau, D. Sarty, K. H. Tanaka, A. M. Denoncourt, P. Lague, M. E. Reith, and S. J. Charette (2013)
Microbiology 159, 1937-1945
   Abstract »    Full Text »    PDF »
Basic Residues in the Matrix Domain and Multimerization Target Murine Leukemia Virus Gag to the Virological Synapse.
F. Li, J. Jin, C. Herrmann, and W. Mothes (2013)
J. Virol. 87, 7113-7126
   Abstract »    Full Text »    PDF »
Delineating the core regulatory elements crucial for directed cell migration by examining folic-acid-mediated responses.
K. Srinivasan, G. A. Wright, N. Hames, M. Housman, A. Roberts, K. J. Aufderheide, and C. Janetopoulos (2013)
J. Cell Sci. 126, 221-233
   Abstract »    Full Text »    PDF »
The motor protein myosin 1G functions in Fc{gamma}R-mediated phagocytosis.
A. E. Dart, S. Tollis, M. D. Bright, G. Frankel, and R. G. Endres (2012)
J. Cell Sci. 125, 6020-6029
   Abstract »    Full Text »    PDF »
A pleckstrin homology-related domain in SHIP1 mediates membrane localization during Fc{gamma} receptor-induced phagocytosis.
A. Ming-Lum, S. Shojania, E. So, E. McCarrell, E. Shaw, D. Vu, I. Wang, L. P. McIntosh, and A. L.- F. Mui (2012)
FASEB J 26, 3163-3177
   Abstract »    Full Text »    PDF »
Molecular Basis of Dynamic Relocalization of Dictyostelium Myosin IB.
H. Brzeska, J. Guag, G. M. Preston, M. A. Titus, and E. D. Korn (2012)
J. Biol. Chem. 287, 14923-14936
   Abstract »    Full Text »    PDF »
TOR complex 2 (TORC2) in Dictyostelium suppresses phagocytic nutrient capture independently of TORC1-mediated nutrient sensing.
D. Rosel, T. Khurana, A. Majithia, X. Huang, R. Bhandari, and A. R. Kimmel (2012)
J. Cell Sci. 125, 37-48
   Abstract »    Full Text »    PDF »
Structure, Dynamics, Lipid Binding, and Physiological Relevance of the Putative GTPase-binding Domain of Dictyostelium Formin C.
S. A. Dames, A. Junemann, H. J. Sass, A. Schonichen, B. E. Stopschinski, S. Grzesiek, J. Faix, and M. Geyer (2011)
J. Biol. Chem. 286, 36907-36920
   Abstract »    Full Text »    PDF »
Target-specific mechanics of phagocytosis: protrusive neutrophil response to zymosan differs from the uptake of antibody-tagged pathogens.
C.-Y. Lee, M. Herant, and V. Heinrich (2011)
J. Cell Sci. 124, 1106-1114
   Abstract »    Full Text »    PDF »
Phosphoinositides differentially regulate bacterial uptake and Nramp1-induced resistance to Legionella infection in Dictyostelium.
B. Peracino, A. Balest, and S. Bozzaro (2010)
J. Cell Sci. 123, 4039-4051
   Abstract »    Full Text »    PDF »
Proteomic identification of phosphatidylinositol (3,4,5) triphosphate-binding proteins in Dictyostelium discoideum.
P. Zhang, Y. Wang, H. Sesaki, and M. Iijima (2010)
PNAS 107, 11829-11834
   Abstract »    Full Text »    PDF »
Inhibitory Odorant Signaling in Mammalian Olfactory Receptor Neurons.
K. Ukhanov, E. A. Corey, D. Brunert, K. Klasen, and B. W. Ache (2010)
J Neurophysiol 103, 1114-1122
   Abstract »    Full Text »    PDF »
Phosphoinositide 3-kinase signaling in the vertebrate retina.
R. V. S. Rajala (2010)
J. Lipid Res. 51, 4-22
   Abstract »    Full Text »    PDF »
Localization of Phosphatidylinositol (3,4,5)-Trisphosphate to Phagosomes in Entamoeba histolytica Achieved Using Glutathione S-Transferase- and Green Fluorescent Protein-Tagged Lipid Biosensors.
Y. A. Byekova, R. R. Powell, B. H. Welter, and L. A. Temesvari (2010)
Infect. Immun. 78, 125-137
   Abstract »    Full Text »    PDF »
Phosphatidylinositol 3-kinase activity and asymmetrical accumulation of F-actin are necessary for establishment of cell polarity in the early development of monospores from the marine red alga Porphyra yezoensis.
L. Li, N. Saga, and K. Mikami (2008)
J. Exp. Bot. 59, 3575-3586
   Abstract »    Full Text »    PDF »
3-Phosphoinositide-dependent Kinase 1 Deficiency Perturbs Toll-like Receptor Signaling Events and Actin Cytoskeleton Dynamics in Dendritic Cells.
R. Zaru, P. Mollahan, and C. Watts (2008)
J. Biol. Chem. 283, 929-939
   Abstract »    Full Text »    PDF »
Regulation of Fc{gamma}R-stimulated phagocytosis by the 72-kDa inositol polyphosphate 5-phosphatase: SHIP1, but not the 72-kDa 5-phosphatase, regulates complement receptor 3-mediated phagocytosis by differential recruitment of these 5-phosphatases to the phagocytic cup.
K. A. Horan, K.-i. Watanabe, A. M. Kong, C. G. Bailey, J. E. J. Rasko, T. Sasaki, and C. A. Mitchell (2007)
Blood 110, 4480-4491
   Abstract »    Full Text »    PDF »
PTEN plays a role in the suppression of lateral pseudopod formation during Dictyostelium motility and chemotaxis.
D. Wessels, D. F. Lusche, S. Kuhl, P. Heid, and D. R. Soll (2007)
J. Cell Sci. 120, 2517-2531
   Abstract »    Full Text »    PDF »
Selective membrane exclusion in phagocytic and macropinocytic cups.
V. Mercanti, S. J. Charette, N. Bennett, J.-J. Ryckewaert, F. Letourneur, and P. Cosson (2006)
J. Cell Sci. 119, 4079-4087
   Abstract »    Full Text »    PDF »
RacG Regulates Morphology, Phagocytosis, and Chemotaxis.
B. P. Somesh, G. Vlahou, M. Iijima, R. H. Insall, P. Devreotes, and F. Rivero (2006)
Eukaryot. Cell 5, 1648-1663
   Abstract »    Full Text »    PDF »
Imaging of cell migration.
D. Dormann and C. J. Weijer (2006)
EMBO J. 25, 3480-3493
   Abstract »    Full Text »    PDF »
Distinct Roles of PI(3,4,5)P3 during Chemoattractant Signaling in Dictyostelium: A Quantitative In Vivo Analysis by Inhibition of PI3-Kinase.
H. M. Loovers, M. Postma, I. Keizer-Gunnink, Y. E. Huang, P. N. Devreotes, and P. J.M. van Haastert (2006)
Mol. Biol. Cell 17, 1503-1513
   Abstract »    Full Text »    PDF »
Single-molecule analysis of chemoattractant-stimulated membrane recruitment of a PH-domain-containing protein.
S. Matsuoka, M. Iijima, T. M. Watanabe, H. Kuwayama, T. Yanagida, P. N. Devreotes, and M. Ueda (2006)
J. Cell Sci. 119, 1071-1079
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882