Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Cell Sci. 118 (23): 5661-5673

Research Article

14-3-3 cooperates with LKB1 to regulate the activity and localization of QSK and SIK

Abdallah K. Al-Hakim1,*, Olga Göransson1, Maria Deak1, Rachel Toth1, David G. Campbell1, Nick A. Morrice1, Alan R. Prescott2, and Dario R. Alessi1

1 MRC Protein Phosphorylation Unit, MSI/WTB complex, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
2 Division of Cell Biology and Immunology, MSI/WTB complex, University of Dundee, Dow Street, Dundee, DD1 5EH, UK

* Author for correspondence (e-mail: a.alhakim{at}

Accepted for publication 31 August 2005.

Abstract: The LKB1 tumour suppressor kinase phosphorylates and activates a number of protein kinases belonging to the AMP-activated protein kinase (AMPK) subfamily. We have used a modified tandem affinity purification strategy to identify proteins that interact with AMPK{alpha}, as well as the twelve AMPK-related kinases that are activated by LKB1. The AMPKß and AMPK{gamma} regulatory subunits were associated with AMPK{alpha}, but not with any of the AMPK-related kinases, explaining why AMP does not influence the activity of these enzymes. In addition, we identified novel binding partners that interacted with one or more of the AMPK subfamily enzymes, including fat facets/ubiquitin specific protease-9 (USP9), AAA-ATPase-p97, adenine nucleotide translocase, protein phosphatase 2A holoenzyme and isoforms of the phospho-protein binding adaptor 14-3-3. Interestingly, the 14-3-3 isoforms bound directly to the T-loop Thr residue of QSK and SIK, after these were phosphorylated by LKB1. Consistent with this, the 14-3-3 isoforms failed to interact with non-phosphorylated QSK and SIK, in LKB1 knockout muscle or in HeLa cells in which LKB1 is not expressed. Moreover, mutation of the T-loop Thr phosphorylated by LKB1, prevented QSK and SIK from interacting with 14-3-3 in vitro. Binding of 14-3-3 to QSK and SIK, enhanced catalytic activity towards the TORC2 protein and the AMARA peptide, and was required for the cytoplasmic localization of SIK and for localization of QSK to punctate structures within the cytoplasm. To our knowledge, this study provides the first example of 14-3-3 binding directly to the T-loop of a protein kinase and influencing its catalytic activity and cellular localization.

Key Words: AMPK • MARK/Par1 • Cell polarity • Mass spectrometry • Tandem affinity purification

An integrated workflow for charting the human interaction proteome: insights into the PP2A system.
T. Glatter, A. Wepf, R. Aebersold, and M. Gstaiger (2014)
Mol Syst Biol 5, 237
   Abstract »    Full Text »    PDF »
Interaction between Salt-inducible Kinase 2 (SIK2) and p97/Valosin-containing Protein (VCP) Regulates Endoplasmic Reticulum (ER)-associated Protein Degradation in Mammalian Cells.
F.-C. Yang, Y.-H. Lin, W.-H. Chen, J.-Y. Huang, H.-Y. Chang, S.-H. Su, H.-T. Wang, C.-Y. Chiang, P.-H. Hsu, M.-D. Tsai, et al. (2013)
J. Biol. Chem. 288, 33861-33872
   Abstract »    Full Text »    PDF »
Canonical and Kinase Activity-Independent Mechanisms for Extracellular Signal-Regulated Kinase 5 (ERK5) Nuclear Translocation Require Dissociation of Hsp90 from the ERK5-Cdc37 Complex.
T. Erazo, A. Moreno, G. Ruiz-Babot, A. Rodriguez-Asiain, N. A. Morrice, J. Espadamala, J. R. Bayascas, N. Gomez, and J. M. Lizcano (2013)
Mol. Cell. Biol. 33, 1671-1686
   Abstract »    Full Text »    PDF »
The Tumor Suppressor Kinase LKB1 Activates the Downstream Kinases SIK2 and SIK3 to Stimulate Nuclear Export of Class IIa Histone Deacetylases.
D. R. Walkinshaw, R. Weist, G.-W. Kim, L. You, L. Xiao, J. Nie, C. S. Li, S. Zhao, M. Xu, and X.-J. Yang (2013)
J. Biol. Chem. 288, 9345-9362
   Abstract »    Full Text »    PDF »
Regulation of SIK1 abundance and stability is critical for myogenesis.
R. Stewart, D. Akhmedov, C. Robb, C. Leiter, and R. Berdeaux (2013)
PNAS 110, 117-122
   Abstract »    Full Text »    PDF »
Muscle-specific Knock-out of NUAK Family SNF1-like Kinase 1 (NUAK1) Prevents High Fat Diet-induced Glucose Intolerance.
F. Inazuka, N. Sugiyama, M. Tomita, T. Abe, G. Shioi, and H. Esumi (2012)
J. Biol. Chem. 287, 16379-16389
   Abstract »    Full Text »    PDF »
Transcriptional Induction of Salt-inducible Kinase 1 by Transforming Growth Factor {beta} Leads to Negative Regulation of Type I Receptor Signaling in Cooperation with the Smurf2 Ubiquitin Ligase.
P. Lonn, M. Vanlandewijck, E. Raja, M. Kowanetz, Y. Watanabe, K. Kowanetz, E. Vasilaki, C.-H. Heldin, and A. Moustakas (2012)
J. Biol. Chem. 287, 12867-12878
   Abstract »    Full Text »    PDF »
Phosphorylation of the CREB-specific coactivator TORC2 at Ser307 regulates its intracellular localization in COS-7 cells and in the mouse liver.
T. Uebi, M. Tamura, N. Horike, Y. K. Hashimoto, and H. Takemori (2010)
Am J Physiol Endocrinol Metab 299, E413-E425
   Abstract »    Full Text »    PDF »
New Roles for the LKB1-NUAK Pathway in Controlling Myosin Phosphatase Complexes and Cell Adhesion.
A. Zagorska, M. Deak, D. G. Campbell, S. Banerjee, M. Hirano, S. Aizawa, A. R. Prescott, and D. R. Alessi (2010)
Science Signaling 3, ra25
   Abstract »    Full Text »    PDF »
USP9X Enhances the Polarity and Self-Renewal of Embryonic Stem Cell-derived Neural Progenitors.
L. A. Jolly, V. Taylor, and S. A. Wood (2009)
Mol. Biol. Cell 20, 2015-2029
   Abstract »    Full Text »    PDF »
Lkb1 is required for TGF{beta}-mediated myofibroblast differentiation.
K. Vaahtomeri, E. Ventela, K. Laajanen, P. Katajisto, P.-J. Wipff, B. Hinz, T. Vallenius, M. Tiainen, and T. P. Makela (2008)
J. Cell Sci. 121, 3531-3540
   Abstract »    Full Text »    PDF »
TGF{beta} induces SIK to negatively regulate type I receptor kinase signaling.
M. Kowanetz, P. Lonn, M. Vanlandewijck, K. Kowanetz, C.-H. Heldin, and A. Moustakas (2008)
J. Cell Biol. 182, 655-662
   Abstract »    Full Text »    PDF »
Cellular Energetic Status Supervises the Synthesis of Bis-Diphosphoinositol Tetrakisphosphate Independently of AMP-Activated Protein Kinase.
K. Choi, E. Mollapour, J. H. Choi, and S. B. Shears (2008)
Mol. Pharmacol. 74, 527-536
   Abstract »    Full Text »    PDF »
Fibroblast Growth Factor Receptor 2 Phosphorylation on Serine 779 Couples to 14-3-3 and Regulates Cell Survival and Proliferation.
A. Lonic, E. F. Barry, C. Quach, B. Kobe, N. Saunders, and M. A. Guthridge (2008)
Mol. Cell. Biol. 28, 3372-3385
   Abstract »    Full Text »    PDF »
Hepatic Glucose Sensing via the CREB Coactivator CRTC2.
R. Dentin, S. Hedrick, J. Xie, J. Yates III, and M. Montminy (2008)
Science 319, 1402-1405
   Abstract »    Full Text »    PDF »
TORC2 regulates germinal center repression of the TCL1 oncoprotein to promote B cell development and inhibit transformation.
A. I. Kuraishy, S. W. French, M. Sherman, M. Herling, D. Jones, R. Wall, and M. A. Teitell (2007)
PNAS 104, 10175-10180
   Abstract »    Full Text »    PDF »
DYRK1A Autophosphorylation on Serine Residue 520 Modulates Its Kinase Activity via 14-3-3 Binding.
M. Alvarez, X. Altafaj, S. Aranda, and S. de la Luna (2007)
Mol. Biol. Cell 18, 1167-1178
   Abstract »    Full Text »    PDF »
Regulation of the polarity kinases PAR-1/MARK by 14-3-3 interaction and phosphorylation.
O. Goransson, M. Deak, S. Wullschleger, N. A. Morrice, A. R. Prescott, and D. R. Alessi (2006)
J. Cell Sci. 119, 4059-4070
   Abstract »    Full Text »    PDF »
Plectin scaffolds recruit energy-controlling AMP-activated protein kinase (AMPK) in differentiated myofibres.
M. Gregor, A. Zeold, S. Oehler, K. A. Marobela, P. Fuchs, G. Weigel, D. G. Hardie, and G. Wiche (2006)
J. Cell Sci. 119, 1864-1875
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882