Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Cell Sci. 118 (5): 863-872

Research Article

Re-establishing the regenerative potential of central nervous system axons in postnatal mice

Kin-Sang Cho1, Liu Yang1, Bin Lu1,*, Hong Feng Ma1, Xizhong Huang1, Milos Pekny2,{ddagger}, and Dong Feng Chen1,{ddagger}

1 Schepens Eye Research Institute, Program in Neuroscience and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
2 The Arvid Carlsson Institute for Neuroscience, Institute of Clinical Neuroscience, Sahlgrenska Academy, Göteborg University, Medicinaregatan 9A, SE-413 90 Göteborg, Sweden

{ddagger} Authors for correspondence (e-mail: dfchen{at}; milos.pekny{at}

Accepted for publication 22 November 2004.

Abstract: At a certain point in development, axons in the mammalian central nervous system lose their ability to regenerate after injury. Using the optic nerve model, we show that this growth failure coincides with two developmental events: the loss of Bcl-2 expression by neurons and the maturation of astrocytes. Before postnatal day 4, when astrocytes are immature, overexpression of Bcl-2 alone supported robust and rapid optic nerve regeneration over long distances, leading to innervation of brain targets by day 4 in mice. As astrocytes matured after postnatal day 4, axonal regeneration was inhibited in mice overexpressing Bcl-2. Concurrent induction of Bcl-2 and attenuation of reactive gliosis reversed the failure of CNS axonal re-elongation in postnatal mice and led to rapid axonal regeneration over long distances and reinnervation of the brain targets by a majority of severed optic nerve fibers up to 2 weeks of age. These results suggest that an early postnatal downregulation of Bcl-2 and post-traumatic reactive gliosis are two important elements of axon regenerative failure in the CNS.

Key Words: Astrocyte intermediate filament • GFAP • Vimentin • Bcl-2 • Axon regeneration

Exploiting mTOR Signaling: A Novel Translatable Treatment Strategy for Traumatic Optic Neuropathy?.
P. J. Morgan-Warren, M. Berry, Z. Ahmed, R. A. H. Scott, and A. Logan (2013)
Invest. Ophthalmol. Vis. Sci. 54, 6903-6916
   Abstract »    Full Text »    PDF »
Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice.
A. W. Kraft, X. Hu, H. Yoon, P. Yan, Q. Xiao, Y. Wang, S. C. Gil, J. Brown, U. Wilhelmsson, J. L. Restivo, et al. (2013)
FASEB J 27, 187-198
   Abstract »    Full Text »    PDF »
Modulation of Neural Plasticity as a Basis for Stroke Rehabilitation.
M. Pekna, M. Pekny, and M. Nilsson (2012)
Stroke 43, 2819-2828
   Full Text »    PDF »
Heterogeneous Nuclear Ribonucleoprotein K, an RNA-Binding Protein, Is Required for Optic Axon Regeneration in Xenopus laevis.
Y. Liu, H. Yu, S. K. Deaton, and B. G. Szaro (2012)
J. Neurosci. 32, 3563-3574
   Abstract »    Full Text »    PDF »
Reactive glial cells: increased stiffness correlates with increased intermediate filament expression.
Y.-B. Lu, I. Iandiev, M. Hollborn, N. Korber, E. Ulbricht, P. G. Hirrlinger, T. Pannicke, E.-Q. Wei, A. Bringmann, H. Wolburg, et al. (2011)
FASEB J 25, 624-631
   Abstract »    Full Text »    PDF »
Optic Neuropathy Due to Microbead-Induced Elevated Intraocular Pressure in the Mouse.
H. Chen, X. Wei, K.-S. Cho, G. Chen, R. Sappington, D. J. Calkins, and D. F. Chen (2011)
Invest. Ophthalmol. Vis. Sci. 52, 36-44
   Abstract »    Full Text »    PDF »
Dynamic Patterns of Histone Lysine Methylation in the Developing Retina.
R. C. Rao, K. T. Tchedre, M. T. A. Malik, N. Coleman, Y. Fang, V. E. Marquez, and D. F. Chen (2010)
Invest. Ophthalmol. Vis. Sci. 51, 6784-6792
   Abstract »    Full Text »    PDF »
Genetic Deletion of Paired Immunoglobulin-Like Receptor B Does Not Promote Axonal Plasticity or Functional Recovery after Traumatic Brain Injury.
S. Omoto, M. Ueno, S. Mochio, T. Takai, and T. Yamashita (2010)
J. Neurosci. 30, 13045-13052
   Abstract »    Full Text »    PDF »
KLF Family Members Regulate Intrinsic Axon Regeneration Ability.
D. L. Moore, M. G. Blackmore, Y. Hu, K. H. Kaestner, J. L. Bixby, V. P. Lemmon, and J. L. Goldberg (2009)
Science 326, 298-301
   Abstract »    Full Text »    PDF »
Fructose Supports Energy Metabolism of Some, But Not All, Axons in Adult Mouse Optic Nerve.
L. Allen, S. Anderson, R. Wender, P. Meakin, B. R. Ransom, D. E. Ray, and A. M. Brown (2006)
J Neurophysiol 95, 1917-1925
   Abstract »    Full Text »    PDF »
Neurotrophic factor synergy is required for neuronal survival and disinhibited axon regeneration after CNS injury.
A. Logan, Z. Ahmed, A. Baird, A. M. Gonzalez, and M. Berry (2006)
Brain 129, 490-502
   Abstract »    Full Text »    PDF »
EGFR Activation Mediates Inhibition of Axon Regeneration by Myelin and Chondroitin Sulfate Proteoglycans.
V. Koprivica, K.-S. Cho, J. B. Park, G. Yiu, J. Atwal, B. Gore, J. A. Kim, E. Lin, M. Tessier-Lavigne, D. F. Chen, et al. (2005)
Science 310, 106-110
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882