Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Cell Sci. 119 (11): 2246-2257


Research Article

PLD1 and ERK2 regulate cytosolic lipid droplet formation

Linda Andersson1,*, Pontus Boström1,*, Johanna Ericson1, Mikael Rutberg1, Björn Magnusson1, Denis Marchesan1, Michel Ruiz1, Lennart Asp1, Ping Huang2, Michael A. Frohman2, Jan Borén1, and Sven-Olof Olofsson1,{ddagger}

1 Wallenberg Laboratory for Cardiovascular Research, Göteborg University, Sahlgrenska University Hospital, SE-413 45 Göteborg, Sweden
2 Department of Pharmacological Science and the Center for Developmental Genetics, Stony Brook University, Stony Brook, New York 11794, USA

{ddagger} Author for correspondence (e-mail: Sven-Olof.Olofsson{at}wlab.gu.se)

Accepted for publication 15 February 2006.

Abstract: We have previously uncovered roles for phospholipase D (PLD) and an unknown cytosolic protein in the formation of cytosolic lipid droplets using a cell-free system. In this report, PLD1 has been identified as the relevant isoform, and extracellular signal-regulated kinase 2 (ERK2) as the cytosolic protein. Increased expression of PLD1 increased lipid droplet formation whereas knockdown of PLD1 using siRNA was inhibitory. A role for ERK2 in basal lipid droplet formation was revealed by overexpression or microinjection, and ablation by siRNA knockdown or pharmacological inhibition. Similar manipulations of other Map kinases such as ERK1, JNK1 or JNK2 and p38{alpha} or p38ß were without effect. Insulin stimulated the formation of lipid droplets and this stimulation was inhibited by knockdown of PLD1 (by siRNA) and by inhibition or knockdown (by siRNA) of ERK2. Inhibition of ERK2 eliminated the effect of PLD1 on lipid droplet formation without affecting PLD1 activity, suggesting that PLD1 functions upstream of ERK2. ERK2 increased the phosphorylation of dynein which increased the amount of the protein on ADRP-containing lipid droplets. Microinjection of antibodies to dynein strongly inhibited the formation of lipid droplets, demonstrating that dynein has a central role in this formation. Thus dynein is a possible target for ERK2.

Key Words: Phospholipase D1 • Extracellular signal-regulated kinase 2 (ERK2) • Cytosolic lipid droplets • Insulin • Dynein • Phosphorylation • Adipocyte differentiation-related protein (ADRP)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Biogenesis of the multifunctional lipid droplet: Lipids, proteins, and sites.
A. Pol, S. P. Gross, and R. G. Parton (2014)
J. Cell Biol. 204, 635-646
   Abstract »    Full Text »    PDF »
Lipidome analysis of rotavirus-infected cells confirms the close interaction of lipid droplets with viroplasms.
E. R. Gaunt, Q. Zhang, W. Cheung, M. J. O. Wakelam, A. M. L. Lever, and U. Desselberger (2013)
J. Gen. Virol. 94, 1576-1586
   Abstract »    Full Text »    PDF »
Increased lipolysis and altered lipid homeostasis protect {gamma}-synuclein-null mutant mice from diet-induced obesity.
S. Millership, N. Ninkina, I. A. Guschina, J. Norton, R. Brambilla, P. J. Oort, S. H. Adams, R. J. Dennis, P. J. Voshol, J. J. Rochford, et al. (2012)
PNAS 109, 20943-20948
   Abstract »    Full Text »    PDF »
Remodeling of Lipid Droplets during Lipolysis and Growth in Adipocytes.
M. Paar, C. Jungst, N. A. Steiner, C. Magnes, F. Sinner, D. Kolb, A. Lass, R. Zimmermann, A. Zumbusch, S. D. Kohlwein, et al. (2012)
J. Biol. Chem. 287, 11164-11173
   Abstract »    Full Text »    PDF »
Identification of the major functional proteins of prokaryotic lipid droplets.
Y. Ding, L. Yang, S. Zhang, Y. Wang, Y. Du, J. Pu, G. Peng, Y. Chen, H. Zhang, J. Yu, et al. (2012)
J. Lipid Res. 53, 399-411
   Abstract »    Full Text »    PDF »
Rip2 Deficiency Leads to Increased Atherosclerosis Despite Decreased Inflammation.
M. C. Levin, P. Jirholt, A. Wramstedt, M. E. Johansson, A. M. Lundberg, M. G. Trajkovska, M. Stahlman, P. Fogelstrand, M. Brisslert, L. Fogelstrand, et al. (2011)
Circ. Res. 109, 1210-1218
   Abstract »    Full Text »    PDF »
A group IIA-secreted phospholipase A2 from snake venom induces lipid body formation in macrophages: the roles of intracellular phospholipases A2 and distinct signaling pathways.
E. Leiguez, J. P. Zuliani, A. M. Cianciarullo, C. M. Fernandes, J. M. Gutierrez, and C. Teixeira (2011)
J. Leukoc. Biol. 90, 155-166
   Abstract »    Full Text »    PDF »
Sequential Synthesis and Methylation of Phosphatidylethanolamine Promote Lipid Droplet Biosynthesis and Stability in Tissue Culture and in Vivo.
G. Horl, A. Wagner, L. K. Cole, R. Malli, H. Reicher, P. Kotzbeck, H. Kofeler, G. Hofler, S. Frank, J. G. Bogner-Strauss, et al. (2011)
J. Biol. Chem. 286, 17338-17350
   Abstract »    Full Text »    PDF »
The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets.
O. Adeyo, P. J. Horn, S. Lee, D. D. Binns, A. Chandrahas, K. D. Chapman, and J. M. Goodman (2011)
J. Cell Biol. 192, 1043-1055
   Abstract »    Full Text »    PDF »
The SNARE Protein SNAP23 and the SNARE-Interacting Protein Munc18c in Human Skeletal Muscle Are Implicated in Insulin Resistance/Type 2 Diabetes.
P. Bostrom, L. Andersson, B. Vind, L. Haversen, M. Rutberg, Y. Wickstrom, E. Larsson, P.-A. Jansson, M. K. Svensson, R. Branemark, et al. (2010)
Diabetes 59, 1870-1878
   Abstract »    Full Text »    PDF »
Insulin Acutely Inhibits Intestinal Lipoprotein Secretion in Humans in Part by Suppressing Plasma Free Fatty Acids.
M. Pavlic, C. Xiao, L. Szeto, B. W. Patterson, and G. F. Lewis (2010)
Diabetes 59, 580-587
   Abstract »    Full Text »    PDF »
siRNA screening reveals JNK2 as an evolutionary conserved regulator of triglyceride homeostasis.
V. Grimard, J. Massier, D. Richter, D. Schwudke, Y. Kalaidzidis, E. Fava, A. Hermetter, and C. Thiele (2008)
J. Lipid Res. 49, 2427-2440
   Abstract »    Full Text »    PDF »
Mesoderm-specific transcript is associated with fat mass expansion in response to a positive energy balance.
L. Nikonova, R. A. Koza, T. Mendoza, P.-M. Chao, J. P. Curley, and L. P. Kozak (2008)
FASEB J 22, 3925-3937
   Abstract »    Full Text »    PDF »
The Gregarious Lipid Droplet.
J. M. Goodman (2008)
J. Biol. Chem. 283, 28005-28009
   Full Text »    PDF »
Group IVA Phospholipase A2 Is Necessary for the Biogenesis of Lipid Droplets.
A. Gubern, J. Casas, M. Barcelo-Torns, D. Barneda, X. de la Rosa, R. Masgrau, F. Picatoste, J. Balsinde, M. A. Balboa, and E. Claro (2008)
J. Biol. Chem. 283, 27369-27382
   Abstract »    Full Text »    PDF »
In vitro Formation of a Novel Type of Membrane Vesicles Containing Dpm1p: Putative Transport Vesicles for Lipid Droplets in Budding Yeast.
Y. Takeda and A. Nakano (2008)
J. Biochem. 143, 803-811
   Abstract »    Full Text »    PDF »
Estrogen and Progesterone Control of Gene Expression in the Mouse Meibomian Gland.
T. Suzuki, F. Schirra, S. M. Richards, R. V. Jensen, and D. A. Sullivan (2008)
Invest. Ophthalmol. Vis. Sci. 49, 1797-1808
   Abstract »    Full Text »    PDF »
Monocyte Chemoattractant Protein-1/CC Chemokine Ligand 2 Controls Microtubule-Driven Biogenesis and Leukotriene B4-Synthesizing Function of Macrophage Lipid Bodies Elicited by Innate Immune Response.
P. Pacheco, A. Vieira-de-Abreu, R. N. Gomes, G. Barbosa-Lima, L. B. Wermelinger, C. M. Maya-Monteiro, A. R. Silva, M. T. Bozza, H. C. Castro-Faria-Neto, C. Bandeira-Melo, et al. (2007)
J. Immunol. 179, 8500-8508
   Abstract »    Full Text »    PDF »
Retention of Low-Density Lipoprotein in Atherosclerotic Lesions of the Mouse: Evidence for a Role of Lipoprotein Lipase.
M. Gustafsson, M. Levin, K. Skalen, J. Perman, V. Friden, P. Jirholt, S.-O. Olofsson, S. Fazio, M. F. Linton, C. F. Semenkovich, et al. (2007)
Circ. Res. 101, 777-783
   Abstract »    Full Text »    PDF »
Oxysterol Binding Protein Induces Upregulation of SREBP-1c and Enhances Hepatic Lipogenesis.
D. Yan, M. Lehto, L. Rasilainen, J. Metso, C. Ehnholm, S. Yla-Herttuala, M. Jauhiainen, and V. M. Olkkonen (2007)
Arterioscler Thromb Vasc Biol 27, 1108-1114
   Abstract »    Full Text »    PDF »
Hypoxia Converts Human Macrophages Into Triglyceride-Loaded Foam Cells.
P. Bostrom, B. Magnusson, P.-A. Svensson, O. Wiklund, J. Boren, L. M. S. Carlsson, M. Stahlman, S.-O. Olofsson, and L. M. Hulten (2006)
Arterioscler Thromb Vasc Biol 26, 1871-1876
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882