Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Mol. Cell. Biol. 22 (14): 5114-5127

Copyright © 2002 by the American Society for Microbiology. All rights reserved.

Selective Cooperation between Fatty Acid Binding Proteins and Peroxisome Proliferator-Activated Receptors in Regulating Transcription

Nguan-Soon Tan,1 Natacha S. Shaw,2 Nicolas Vinckenbosch,1,2 Peng Liu,2 Rubina Yasmin,1 Béatrice Desvergne,1 Walter Wahli,1 and Noa Noy2*

Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853,2 Institut de Biologie Animale, Université de Lausanne, CH-1015 Lausanne, Switzerland1

Received for publication 24 July 2001. Revision received 5 September 2001.

Abstract: Lipophilic compounds such as retinoic acid and long-chain fatty acids regulate gene transcription by activating nuclear receptors such as retinoic acid receptors (RARs) and peroxisome proliferator-activated receptors (PPARs). These compounds also bind in cells to members of the family of intracellular lipid binding proteins, which includes cellular retinoic acid-binding proteins (CRABPs) and fatty acid binding proteins (FABPs). We previously reported that CRABP-II enhances the transcriptional activity of RAR by directly targeting retinoic acid to the receptor. Here, potential functional cooperation between FABPs and PPARs in regulating the transcriptional activities of their common ligands was investigated. We show that adipocyte FABP and keratinocyte FABP (A-FABP and K-FABP, respectively) selectively enhance the activities of PPAR{gamma} and PPARß, respectively, and that these FABPs massively relocate to the nucleus in response to selective ligands for the PPAR isotype which they activate. We show further that A-FABP and K-FABP interact directly with PPAR{gamma} and PPARß and that they do so in a receptor- and ligand-selective manner. Finally, the data demonstrate that the presence of high levels of K-FABP in keratinocytes is essential for PPARß-mediated induction of differentiation of these cells. Taken together, the data establish that A-FABP and K-FABP govern the transcriptional activities of their ligands by targeting them to cognate PPARs in the nucleus, thereby enabling PPARs to exert their biological functions.


* Corresponding author. Mailing address: 225 Savage Hall, Cornell University, Ithaca, NY 14853. Phone: (607) 255-2490. Fax: (607) 255-1033. E-mail: nn14{at}cornell.edu.



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Physiological Functions of Peroxisome Proliferator-Activated Receptor {beta}.
J. G. Neels and P. A. Grimaldi (2014)
Physiol Rev 94, 795-858
   Abstract »    Full Text »    PDF »
Transcript Stabilization by the RNA-Binding Protein HuR Is Regulated by Cellular Retinoic Acid-Binding Protein 2.
A. C. Vreeland, S. Yu, L. Levi, D. de Barros Rossetto, and N. Noy (2014)
Mol. Cell. Biol. 34, 2135-2146
   Abstract »    Full Text »    PDF »
Structural Basis for Ligand Regulation of the Fatty Acid-binding Protein 5, Peroxisome Proliferator-activated Receptor {beta}/{delta} (FABP5-PPAR{beta}/{delta}) Signaling Pathway.
E. H. Armstrong, D. Goswami, P. R. Griffin, N. Noy, and E. A. Ortlund (2014)
J. Biol. Chem. 289, 14941-14954
   Abstract »    Full Text »    PDF »
Fatty Acid-binding Protein 5 (FABP5) Regulates Cognitive Function Both by Decreasing Anandamide Levels and by Activating the Nuclear Receptor Peroxisome Proliferator-activated Receptor {beta}/{delta} (PPAR{beta}/{delta}) in the Brain.
S. Yu, L. Levi, G. Casadesus, G. Kunos, and N. Noy (2014)
J. Biol. Chem. 289, 12748-12758
   Abstract »    Full Text »    PDF »
Hepatic ATGL mediates PPAR-{alpha} signaling and fatty acid channeling through an L-FABP independent mechanism.
K. T. Ong, M. T. Mashek, N. O. Davidson, and D. G. Mashek (2014)
J. Lipid Res. 55, 808-815
   Abstract »    Full Text »    PDF »
Genetic Ablation of the Fatty Acid-Binding Protein FABP5 Suppresses HER2-Induced Mammary Tumorigenesis.
L. Levi, G. Lobo, M. K. Doud, J. von Lintig, D. Seachrist, G. P. Tochtrop, and N. Noy (2013)
Cancer Res. 73, 4770-4780
   Abstract »    Full Text »    PDF »
Vitamin A and retinoid signaling: genomic and nongenomic effects: Thematic Review Series: Fat-Soluble Vitamins: Vitamin A.
Z. Al Tanoury, A. Piskunov, and C. Rochette-Egly (2013)
J. Lipid Res. 54, 1761-1775
   Abstract »    Full Text »    PDF »
Retinoic Acid Induces Neurogenesis by Activating Both Retinoic Acid Receptors (RARs) and Peroxisome Proliferator-activated Receptor {beta}/{delta} (PPAR{beta}/{delta}).
S. Yu, L. Levi, R. Siegel, and N. Noy (2012)
J. Biol. Chem. 287, 42195-42205
   Abstract »    Full Text »    PDF »
Loss of intracellular lipid binding proteins differentially impacts saturated fatty acid uptake and nuclear targeting in mouse hepatocytes.
S. M. Storey, A. L. McIntosh, H. Huang, G. G. Martin, K. K. Landrock, D. Landrock, H. R. Payne, A. B. Kier, and F. Schroeder (2012)
Am J Physiol Gastrointest Liver Physiol 303, G837-G850
   Abstract »    Full Text »    PDF »
Retinoic Acid Upregulates Preadipocyte Genes to Block Adipogenesis and Suppress Diet-Induced Obesity.
D. C. Berry, D. DeSantis, H. Soltanian, C. M. Croniger, and N. Noy (2012)
Diabetes 61, 1112-1121
   Abstract »    Full Text »    PDF »
Fatty Acid-binding Proteins Transport N-Acylethanolamines to Nuclear Receptors and Are Targets of Endocannabinoid Transport Inhibitors.
M. Kaczocha, S. Vivieca, J. Sun, S. T. Glaser, and D. G. Deutsch (2012)
J. Biol. Chem. 287, 3415-3424
   Abstract »    Full Text »    PDF »
Molecular Determinants of Retinoic Acid Sensitivity in Pancreatic Cancer.
S. Gupta, D. Pramanik, R. Mukherjee, N. R. Campbell, S. Elumalai, R. F. de Wilde, S.-M. Hong, M. G. Goggins, A. De Jesus-Acosta, D. Laheru, et al. (2012)
Clin. Cancer Res. 18, 280-289
   Abstract »    Full Text »    PDF »
Nuclear Translocation of Cellular Retinoic Acid-binding Protein II Is Regulated by Retinoic Acid-controlled SUMOylation.
A. Majumdar, A. D. Petrescu, Y. Xiong, and N. Noy (2011)
J. Biol. Chem. 286, 42749-42757
   Abstract »    Full Text »    PDF »
Aryl Hydrocarbon Receptor-Mediated Induction of Stearoyl-CoA Desaturase 1 Alters Hepatic Fatty Acid Composition in TCDD-Elicited Steatosis.
M. M. Angrish, A. D. Jones, J. R. Harkema, and T. R. Zacharewski (2011)
Toxicol. Sci. 124, 299-310
   Abstract »    Full Text »    PDF »
Novel Functions of Lipid-binding Protein 5 in Caenorhabditis elegans Fat Metabolism.
M. Xu, H.-J. Joo, and Y.-K. Paik (2011)
J. Biol. Chem. 286, 28111-28118
   Abstract »    Full Text »    PDF »
Detecting structural similarity of ligand interactions in the lipid metabolic system including enzymes, lipid-binding proteins and nuclear receptors.
C. Shionyu-Mitsuyama, T. Waku, T. Shiraki, T. Oyama, T. Shirai, and K. Morikawa (2011)
Protein Eng. Des. Sel. 24, 397-403
   Abstract »    Full Text »    PDF »
Brain Fatty Acid-binding Protein and {omega}-3/{omega}-6 Fatty Acids: MECHANISTIC INSIGHT INTO MALIGNANT GLIOMA CELL MIGRATION.
R. Mita, M. J. Beaulieu, C. Field, and R. Godbout (2010)
J. Biol. Chem. 285, 37005-37015
   Abstract »    Full Text »    PDF »
Tissue-specific Functions in the Fatty Acid-binding Protein Family.
J. Storch and A. E. Thumser (2010)
J. Biol. Chem. 285, 32679-32683
   Abstract »    Full Text »    PDF »
Differential effects of hypothalamic long-chain fatty acid infusions on suppression of hepatic glucose production.
R. A. Ross, L. Rossetti, T. K. T. Lam, and G. J. Schwartz (2010)
Am J Physiol Endocrinol Metab 299, E633-E639
   Abstract »    Full Text »    PDF »
Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins.
C. Subra, D. Grand, K. Laulagnier, A. Stella, G. Lambeau, M. Paillasse, P. De Medina, B. Monsarrat, B. Perret, S. Silvente-Poirot, et al. (2010)
J. Lipid Res. 51, 2105-2120
   Abstract »    Full Text »    PDF »
Fatty Acid-binding Protein 5 and PPAR{beta}/{delta} Are Critical Mediators of Epidermal Growth Factor Receptor-induced Carcinoma Cell Growth.
P. Kannan-Thulasiraman, D. D. Seachrist, G. H. Mahabeleshwar, M. K. Jain, and N. Noy (2010)
J. Biol. Chem. 285, 19106-19115
   Abstract »    Full Text »    PDF »
Fluorescent n-3 and n-6 Very Long Chain Polyunsaturated Fatty Acids: THREE-PHOTON IMAGING IN LIVING CELLS EXPRESSING LIVER FATTY ACID-BINDING PROTEIN.
A. L. McIntosh, H. Huang, B. P. Atshaves, E. Wellberg, D. V. Kuklev, W. L. Smith, A. B. Kier, and F. Schroeder (2010)
J. Biol. Chem. 285, 18693-18708
   Abstract »    Full Text »    PDF »
Repression of Cellular Retinoic Acid-binding Protein II during Adipocyte Differentiation.
D. C. Berry, H. Soltanian, and N. Noy (2010)
J. Biol. Chem. 285, 15324-15332
   Abstract »    Full Text »    PDF »
Adipocyte Fatty Acid-binding Protein Modulates Inflammatory Responses in Macrophages through a Positive Feedback Loop Involving c-Jun NH2-terminal Kinases and Activator Protein-1.
X. Hui, H. Li, Z. Zhou, K. S. L. Lam, Y. Xiao, D. Wu, K. Ding, Y. Wang, P. M. Vanhoutte, and A. Xu (2010)
J. Biol. Chem. 285, 10273-10280
   Abstract »    Full Text »    PDF »
Fatty acid binding protein 4 is a target of VEGF and a regulator of cell proliferation in endothelial cells.
H. Elmasri, C. Karaaslan, Y. Teper, E. Ghelfi, M. Weng, T. A. Ince, H. Kozakewich, J. Bischoff, and S. Cataltepe (2009)
FASEB J 23, 3865-3873
   Abstract »    Full Text »    PDF »
Regulation of Skeletal Muscle Physiology and Metabolism by Peroxisome Proliferator-Activated Receptor {delta}.
E. Ehrenborg and A. Krook (2009)
Pharmacol. Rev. 61, 373-393
   Abstract »    Full Text »    PDF »
Influence of birth weight on gene regulators of lipid metabolism and utilization in subcutaneous adipose tissue and skeletal muscle of neonatal pigs.
P J Williams, N Marten, V Wilson, J C Litten-Brown, A M Corson, L Clarke, M E Symonds, and A Mostyn (2009)
Reproduction 138, 609-617
   Abstract »    Full Text »    PDF »
Body weight loss in beef cows: I. The effect of increased {beta}-oxidation on messenger ribonucleic acid levels of uncoupling proteins two and three and peroxisome proliferator-activated receptor in skeletal muscle.
K. M. Brennan, J. J. Michal, J. J. Ramsey, and K. A. Johnson (2009)
J Anim Sci 87, 2860-2866
   Abstract »    Full Text »    PDF »
L-FABP directly interacts with PPAR{alpha} in cultured primary hepatocytes.
H. A. Hostetler, A. L. McIntosh, B. P. Atshaves, S. M. Storey, H. R. Payne, A. B. Kier, and F. Schroeder (2009)
J. Lipid Res. 50, 1663-1675
   Abstract »    Full Text »    PDF »
All-trans-Retinoic Acid Represses Obesity and Insulin Resistance by Activating both Peroxisome Proliferation-Activated Receptor {beta}/{delta} and Retinoic Acid Receptor.
D. C. Berry and N. Noy (2009)
Mol. Cell. Biol. 29, 3286-3296
   Abstract »    Full Text »    PDF »
Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation.
P. Lefebvre, B. Cariou, F. Lien, F. Kuipers, and B. Staels (2009)
Physiol Rev 89, 147-191
   Abstract »    Full Text »    PDF »
Immunologic Properties Differ in Preterm Infants Fed Olive Oil vs Soy-Based Lipid Emulsions During Parenteral Nutrition.
A. Gawecka, J. Michalkiewicz, M. K. Kornacka, B. Luckiewicz, and I. Kubiszewska (2008)
JPEN J Parenter Enteral Nutr 32, 448-453
   Abstract »    Full Text »    PDF »
Overcoming retinoic acid-resistance of mammary carcinomas by diverting retinoic acid from PPAR{beta}/{delta} to RAR.
T. T. Schug, D. C. Berry, I. A. Toshkov, L. Cheng, A. Y. Nikitin, and N. Noy (2008)
PNAS 105, 7546-7551
   Abstract »    Full Text »    PDF »
Renal L-Type Fatty Acid Binding Protein in Acute Ischemic Injury.
T. Yamamoto, E. Noiri, Y. Ono, K. Doi, K. Negishi, A. Kamijo, K. Kimura, T. Fujita, T. Kinukawa, H. Taniguchi, et al. (2007)
J. Am. Soc. Nephrol. 18, 2894-2902
   Abstract »    Full Text »    PDF »
Predominance of a Proinflammatory Phenotype in Monocyte-Derived Macrophages From Subjects With Low Plasma HDL-Cholesterol.
L. Sarov-Blat, R. S. Kiss, B. Haidar, N. Kavaslar, M. Jaye, M. Bertiaux, K. Steplewski, M. R. Hurle, D. Sprecher, R. McPherson, et al. (2007)
Arterioscler Thromb Vasc Biol 27, 1115-1122
   Abstract »    Full Text »    PDF »
Regulation of Dendritic Cell Function and T Cell Priming by the Fatty Acid-Binding Protein aP2.
M. S. Rolph, T. R. Young, B. O. V. Shum, C. Z. Gorgun, C. Schmitz-Peiffer, I. A. Ramshaw, G. S. Hotamisligil, and C. R. Mackay (2006)
J. Immunol. 177, 7794-7801
   Abstract »    Full Text »    PDF »
Ileal Bile Acid-binding Protein, Functionally Associated with the Farnesoid X Receptor or the Ileal Bile Acid Transporter, Regulates Bile Acid Activity in the Small Intestine.
M. Nakahara, N. Furuya, K. Takagaki, T. Sugaya, K. Hirota, A. Fukamizu, T. Kanda, H. Fujii, and R. Sato (2005)
J. Biol. Chem. 280, 42283-42289
   Abstract »    Full Text »    PDF »
Gene Expression Profiling of Progressive Papillary Noninvasive Carcinomas of the Urinary Bladder.
P. J. Wild, A. Herr, C. Wissmann, R. Stoehr, A. Rosenthal, D. Zaak, R. Simon, R. Knuechel, C. Pilarsky, and A. Hartmann (2005)
Clin. Cancer Res. 11, 4415-4429
   Abstract »    Full Text »    PDF »
Loss of Expression of the Adipocyte-type Fatty Acid-binding Protein (A-FABP) Is Associated with Progression of Human Urothelial Carcinomas.
G. Ohlsson, J. M. A. Moreira, P. Gromov, G. Sauter, and J. E. Celis (2005)
Mol. Cell. Proteomics 4, 570-581
   Abstract »    Full Text »    PDF »
Physical Association between the Adipocyte Fatty Acid-binding Protein and Hormone-sensitive Lipase: A FLUORESCENCE RESONANCE ENERGY TRANSFER ANALYSIS.
A. J. Smith, M. A. Sanders, B. R. Thompson, C. Londos, F. B. Kraemer, and D. A. Bernlohr (2004)
J. Biol. Chem. 279, 52399-52405
   Abstract »    Full Text »    PDF »
Fatty Acid Binding Proteins--The Evolutionary Crossroads of Inflammatory and Metabolic Responses.
L. Makowski and G. S. Hotamisligil (2004)
J. Nutr. 134, 2464S-2468S
   Abstract »    Full Text »    PDF »
Liver Fatty Acid-binding Protein Gene Ablation Inhibits Branched-chain Fatty Acid Metabolism in Cultured Primary Hepatocytes.
B. P. Atshaves, A. M. McIntosh, O. I. Lyuksyutova, W. Zipfel, W. W. Webb, and F. Schroeder (2004)
J. Biol. Chem. 279, 30954-30965
   Abstract »    Full Text »    PDF »
The peroxisome: orchestrating important developmental decisions from inside the cell.
V. I. Titorenko and R. A. Rachubinski (2004)
J. Cell Biol. 164, 641-645
   Abstract »    Full Text »    PDF »
Retinoic Acid Is a High Affinity Selective Ligand for the Peroxisome Proliferator-activated Receptor {beta}/{delta}.
N. Shaw, M. Elholm, and N. Noy (2003)
J. Biol. Chem. 278, 41589-41592
   Abstract »    Full Text »    PDF »
Chemopreventive n-3 fatty acids activate RXR{alpha} in colonocytes.
Y.-Y. Fan, T. E. Spencer, N. Wang, M. P. Moyer, and R. S. Chapkin (2003)
Carcinogenesis 24, 1541-1548
   Abstract »    Full Text »    PDF »
Salt Modulates the Stability and Lipid Binding Affinity of the Adipocyte Lipid-binding Proteins.
A. J. Schoeffler, C. R. Ruiz, A. M. Joubert, X. Yang, and V. J. LiCata (2003)
J. Biol. Chem. 278, 33268-33275
   Abstract »    Full Text »    PDF »
PPAR{beta} regulates vitamin A metabolism-related gene expression in hepatic stellate cells undergoing activation.
K. Hellemans, K. Rombouts, E. Quartier, A. S. Dittie, A. Knorr, L. Michalik, V. Rogiers, F. Schuit, W. Wahli, and A. Geerts (2003)
J. Lipid Res. 44, 280-295
   Abstract »    Full Text »    PDF »
Covalent Modification of Epithelial Fatty Acid-binding Protein by 4-Hydroxynonenal in Vitro and in Vivo. EVIDENCE FOR A ROLE IN ANTIOXIDANT BIOLOGY.
A. Bennaars-Eiden, L. Higgins, A. V. Hertzel, R. J. Kapphahn, D. A. Ferrington, and D. A. Bernlohr (2002)
J. Biol. Chem. 277, 50693-50702
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882