Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Mol. Cell. Biol. 22 (15): 5319-5336

Copyright © 2002 by the American Society for Microbiology. All rights reserved.

Oxygen-Dependent Ubiquitination and Degradation of Hypoxia-Inducible Factor Requires Nuclear-Cytoplasmic Trafficking of the von Hippel-Lindau Tumor Suppressor Protein

Isabelle Groulx and Stephen Lee*

Department of Cellular and Molecular Medicine and Kidney Research Center, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Ontario, Canada

Received for publication 8 February 2002. Revision received 8 March 2002. Accepted for publication 30 April 2002.

Abstract: It is becoming increasingly evident that the degradation of nuclear proteins requires nuclear-cytoplasmic trafficking of both the substrate proteins, as well as the E3 ubiquitin-ligases. Here, we show that nuclear-cytoplasmic trafficking of the von Hippel-Lindau tumor suppressor protein (VHL) is required for oxygen-dependent ubiquitination and degradation of the alpha subunits of hypoxia-inducible factor (HIF-{alpha}). VHL engages in a constitutive transcription-sensitive nuclear-cytoplasmic shuttle unaffected by oxygen tension or levels of nuclear substrate HIF-{alpha}. Ubiquitinated forms of HIF-{alpha}, as well as VHL/ubiquitinated HIF-{alpha} complexes, are found solely in the nuclear compartment of normoxic or reoxygenated VHL-competent cells. HIF-{alpha} localizes exclusively in the nucleus of hypoxic cells but is exported to the cytoplasm upon reoxygenation. Oxygen-dependent nuclear ubiquitination and nuclear export of HIF-{alpha} can be prevented by treatment with an HIF-specific prolyl hydroxylase inhibitor. Treatment with inhibitors of RNA polymerase II activity, which interfere with the ability of VHL to engage in nuclear export, also prevents cytoplasmic accumulation of HIF-{alpha} in reoxygenated cells. This caused a marked increase in the HIF-{alpha} half-life without affecting its nuclear ubiquitination. We present a model by which VHL-mediated ubiquitination of HIF-{alpha} and its subsequent degradation are dependent upon dynamic nuclear-cytoplasmic trafficking of both the E3 ubiquitin-ligase and the nuclear substrate protein.


* Corresponding author. Mailing address: Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8M5 Ontario, Canada. Phone: (613) 562-5800, x8385. Fax: (613) 562-5636. E-mail: slee{at}uottawa.ca.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Transcription Factor YY1 Contributes to Tumor Growth by Stabilizing Hypoxia Factor HIF-1{alpha} in a p53-Independent Manner.
S. Wu, V. Kasim, M. R. Kano, S. Tanaka, S. Ohba, Y. Miura, K. Miyata, X. Liu, A. Matsuhashi, U.-i. Chung, et al. (2013)
Cancer Res. 73, 1787-1799
   Abstract »    Full Text »    PDF »
Oxygen sensing by the prolyl-4-hydroxylase PHD2 within the nuclear compartment and the influence of compartmentalisation on HIF-1 signalling.
F. K. Pientka, J. Hu, S. G. Schindler, B. Brix, A. Thiel, O. Johren, J. Fandrey, U. Berchner-Pfannschmidt, and R. Depping (2012)
J. Cell Sci. 125, 5168-5176
   Abstract »    Full Text »    PDF »
Hypoxia-induced transcriptional repression of the melanoma-associated oncogene MITF.
E. Feige, S. Yokoyama, C. Levy, M. Khaled, V. Igras, R. J. Lin, S. Lee, H. R. Widlund, S. R. Granter, A. L. Kung, et al. (2011)
PNAS 108, E924-E933
   Abstract »    Full Text »    PDF »
A DNA-dependent stress response involving DNA-PK occurs in hypoxic cells and contributes to cellular adaptation to hypoxia.
F. Bouquet, M. Ousset, D. Biard, F. Fallone, S. Dauvillier, P. Frit, B. Salles, and C. Muller (2011)
J. Cell Sci. 124, 1943-1951
   Abstract »    Full Text »    PDF »
Nucleocytoplasmic Shuttling of p62/SQSTM1 and Its Role in Recruitment of Nuclear Polyubiquitinated Proteins to Promyelocytic Leukemia Bodies.
S. Pankiv, T. Lamark, J.-A. Bruun, A. Overvatn, G. Bjorkoy, and T. Johansen (2010)
J. Biol. Chem. 285, 5941-5953
   Abstract »    Full Text »    PDF »
ETS-1 Oncogenic Activity Mediated by Transforming Growth Factor {alpha}.
C. E. Holterman, A. Franovic, J. Payette, and S. Lee (2010)
Cancer Res. 70, 730-740
   Abstract »    Full Text »    PDF »
Central Role of the Oxygen-dependent Degradation Domain of Drosophila HIF{alpha}/Sima in Oxygen-dependent Nuclear Export.
M. Irisarri, S. Lavista-Llanos, N. M. Romero, L. Centanin, A. Dekanty, and P. Wappner (2009)
Mol. Biol. Cell 20, 3878-3887
   Abstract »    Full Text »    PDF »
eEF1A Is a Novel Component of the Mammalian Nuclear Protein Export Machinery.
M. Khacho, K. Mekhail, K. Pilon-Larose, A. Pause, J. Cote, and S. Lee (2008)
Mol. Biol. Cell 19, 5296-5308
   Abstract »    Full Text »    PDF »
Nuclear Oxygen Sensing: Induction of Endogenous Prolyl-hydroxylase 2 Activity by Hypoxia and Nitric Oxide.
U. Berchner-Pfannschmidt, S. Tug, B. Trinidad, F. Oehme, H. Yamac, C. Wotzlaw, I. Flamme, and J. Fandrey (2008)
J. Biol. Chem. 283, 31745-31753
   Abstract »    Full Text »    PDF »
Atypical CRM1-dependent Nuclear Export Signal Mediates Regulation of Hypoxia-inducible Factor-1{alpha} by MAPK.
I. Mylonis, G. Chachami, E. Paraskeva, and G. Simos (2008)
J. Biol. Chem. 283, 27620-27627
   Abstract »    Full Text »    PDF »
Imaging of the hypoxia-inducible factor pathway: insights into oxygen sensing.
U. Berchner-Pfannschmidt, S. Frede, C. Wotzlaw, and J. Fandrey (2008)
Eur. Respir. J. 32, 210-217
   Abstract »    Full Text »    PDF »
Regulation of the Drosophila Hypoxia-Inducible Factor {alpha} Sima by CRM1-Dependent Nuclear Export.
N. M. Romero, M. Irisarri, P. Roth, A. Cauerhff, C. Samakovlis, and P. Wappner (2008)
Mol. Cell. Biol. 28, 3410-3423
   Abstract »    Full Text »    PDF »
Kaposi's Sarcoma-Associated Herpesvirus Viral IFN Regulatory Factor 3 Stabilizes Hypoxia-Inducible Factor-1{alpha} to Induce Vascular Endothelial Growth Factor Expression.
Y. C. Shin, C.-H. Joo, M. U. Gack, H.-R. Lee, and J. U. Jung (2008)
Cancer Res. 68, 1751-1759
   Abstract »    Full Text »    PDF »
Cancer-Causing Mutations in a Novel Transcription-Dependent Nuclear Export Motif of VHL Abrogate Oxygen-Dependent Degradation of Hypoxia-Inducible Factor.
M. Khacho, K. Mekhail, K. Pilon-Larose, J. Payette, and S. Lee (2008)
Mol. Cell. Biol. 28, 302-314
   Abstract »    Full Text »    PDF »
Hypoxia-inducible Factor-1{alpha} Stabilization in Nonhypoxic Conditions: Role of Oxidation and Intracellular Ascorbate Depletion.
E. L. Page, D. A. Chan, A. J. Giaccia, M. Levine, and D. E. Richard (2008)
Mol. Biol. Cell 19, 86-94
   Abstract »    Full Text »    PDF »
A role for AGL ubiquitination in the glycogen storage disorders of Lafora and Cori's disease.
A. Cheng, M. Zhang, M. S. Gentry, C. A. Worby, J. E. Dixon, and A. R. Saltiel (2007)
Genes & Dev. 21, 2399-2409
   Abstract »    Full Text »    PDF »
Identification of a Common Subnuclear Localization Signal.
K. Mekhail, L. Rivero-Lopez, A. Al-Masri, C. Brandon, M. Khacho, and S. Lee (2007)
Mol. Biol. Cell 18, 3966-3977
   Abstract »    Full Text »    PDF »
VHL Promotes E2 Box-Dependent E-Cadherin Transcription by HIF-Mediated Regulation of SIP1 and Snail.
A. J. Evans, R. C. Russell, O. Roche, T. N. Burry, J. E. Fish, V. W. K. Chow, W. Y. Kim, A. Saravanan, M. A. Maynard, M. L. Gervais, et al. (2007)
Mol. Cell. Biol. 27, 157-169
   Abstract »    Full Text »    PDF »
Ubiquitin COOH-Terminal Hydrolase 1: A Biomarker of Renal Cell Carcinoma Associated with Enhanced Tumor Cell Proliferation and Migration[?Q1: Running head: UCHL1, a Biomarker of RCC. Short title OK?Q1].
B. Seliger, A. Fedorushchenko, W. Brenner, A. Ackermann, D. Atkins, S. Hanash, and R. Lichtenfels (2007)
Clin. Cancer Res. 13, 27-37
   Abstract »    Full Text »    PDF »
Identification of MAPK Phosphorylation Sites and Their Role in the Localization and Activity of Hypoxia-inducible Factor-1{alpha}.
I. Mylonis, G. Chachami, M. Samiotaki, G. Panayotou, E. Paraskeva, A. Kalousi, E. Georgatsou, S. Bonanou, and G. Simos (2006)
J. Biol. Chem. 281, 33095-33106
   Abstract »    Full Text »    PDF »
Hypoxia-Inducible Factor-1 (HIF-1).
Q. Ke and M. Costa (2006)
Mol. Pharmacol. 70, 1469-1480
   Abstract »    Full Text »    PDF »
A computational model of intracellular oxygen sensing by hypoxia-inducible factor HIF1{alpha}.
A. A. Qutub and A. S. Popel (2006)
J. Cell Sci. 119, 3467-3480
   Abstract »    Full Text »    PDF »
Cell-Type-Specific Regulation of Degradation of Hypoxia-Inducible Factor 1{alpha}: Role of Subcellular Compartmentalization.
X. Zheng, J. L. Ruas, R. Cao, F. A. Salomons, Y. Cao, L. Poellinger, and T. Pereira (2006)
Mol. Cell. Biol. 26, 4628-4641
   Abstract »    Full Text »    PDF »
The Novel WD-repeat Protein Morg1 Acts as a Molecular Scaffold for Hypoxia-inducible Factor Prolyl Hydroxylase 3 (PHD3).
U. Hopfer, H. Hopfer, K. Jablonski, R. A. K. Stahl, and G. Wolf (2006)
J. Biol. Chem. 281, 8645-8655
   Abstract »    Full Text »    PDF »
Regulation of ubiquitin ligase dynamics by the nucleolus.
K. Mekhail, M. Khacho, A. Carrigan, R. R.J. Hache, L. Gunaratnam, and S. Lee (2005)
J. Cell Biol. 170, 733-744
   Abstract »    Full Text »    PDF »
Silencing of Epidermal Growth Factor Receptor Suppresses Hypoxia-Inducible Factor-2-Driven VHL-/- Renal Cancer.
K. Smith, L. Gunaratnam, M. Morley, A. Franovic, K. Mekhail, and S. Lee (2005)
Cancer Res. 65, 5221-5230
   Abstract »    Full Text »    PDF »
The von Hippel-Lindau Tumor Suppressor Protein: Roles in Cancer and Oxygen Sensing.
W.G. KAELIN JR. (2005)
Cold Spring Harb Symp Quant Biol 70, 159-166
   Abstract »    PDF »
The Von Hippel-Lindau Tumor Suppressor Gene and Kidney Cancer.
W. G. Kaelin Jr. (2004)
Clin. Cancer Res. 10, 6290S-6295S
   Abstract »    Full Text »    PDF »
HIFs and tumors--causes and consequences.
G. Hopfl, O. Ogunshola, and M. Gassmann (2004)
Am J Physiol Regulatory Integrative Comp Physiol 286, R608-R623
   Abstract »    Full Text »    PDF »
Hypoxia upregulates von Hippel-Lindau tumor-suppressor protein through RhoA-dependent activity in renal cell carcinoma.
S. Turcotte, R. R. Desrosiers, and R. Beliveau (2004)
Am J Physiol Renal Physiol 286, F338-F348
   Abstract »    Full Text »    PDF »
Hypoxia Inducible Factor Activates the Transforming Growth Factor-{alpha}/Epidermal Growth Factor Receptor Growth Stimulatory Pathway in VHL-/- Renal Cell Carcinoma Cells.
L. Gunaratnam, M. Morley, A. Franovic, N. de Paulsen, K. Mekhail, D. A. E. Parolin, E. Nakamura, I. A. J. Lorimer, and S. Lee (2003)
J. Biol. Chem. 278, 44966-44974
   Abstract »    Full Text »    PDF »
Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor.
R. K. Bruick (2003)
Genes & Dev. 17, 2614-2623
   Full Text »    PDF »
The von Hippel-Lindau Gene, Kidney Cancer, and Oxygen Sensing.
W. G. Kaelin Jr. (2003)
J. Am. Soc. Nephrol. 14, 2703-2711
   Abstract »    Full Text »    PDF »
HIF prolyl and asparaginyl hydroxylases in the biological response to intracellular O2 levels.
N. Masson and P. J. Ratcliffe (2003)
J. Cell Sci. 116, 3041-3049
   Abstract »    Full Text »    PDF »
Hypoxia-Induced Gene Expression Occurs Solely through the Action of Hypoxia-Inducible Factor 1{alpha} (HIF-1{alpha}): Role of Cytoplasmic Trapping of HIF-2{alpha}.
S.-k. Park, A. M. Dadak, V. H. Haase, L. Fontana, A. J. Giaccia, and R. S. Johnson (2003)
Mol. Cell. Biol. 23, 4959-4971
   Abstract »    Full Text »    PDF »
Intracellular localisation of human HIF-1{alpha} hydroxylases: implications for oxygen sensing.
E. Metzen, U. Berchner-Pfannschmidt, P. Stengel, J. H. Marxsen, I. Stolze, M. Klinger, W. Q. Huang, C. Wotzlaw, T. Hellwig-Burgel, W. Jelkmann, et al. (2003)
J. Cell Sci. 116, 1319-1326
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882