Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Mol. Cell. Biol. 22 (22): 7758-7768

Copyright © 2002 by the American Society for Microbiology. All rights reserved.

Sphingosine Kinase Mediates Vascular Endothelial Growth Factor-Induced Activation of Ras and Mitogen-Activated Protein Kinases

Xiaodong Shu, Weicheng Wu, Raymond D. Mosteller, and Daniel Broek*

Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine at the University of Southern California, Los Angeles, California 90089

Received for publication 4 March 2002. Revision received 17 April 2002. Accepted for publication 22 August 2002.

Abstract: Vascular endothelial growth factor (VEGF) signaling is critical to the processes of angiogenesis and tumor growth. Here, evidence is presented for VEGF stimulation of sphingosine kinase (SPK) that affects not only endothelial cell signaling but also tumor cells expressing VEGF receptors. VEGF or phorbol 12-myristate 13-acetate treatment of the T24 bladder tumor cell line resulted in a time- and dose-dependent stimulation of SPK activity. In T24 cells, VEGF treatment reduced cellular sphingosine levels while raising that of sphingosine-1-phosphate. VEGF stimulation of T24 cells caused a slow and sustained accumulation of Ras-GTP and phosphorylated extracellular signal-regulated kinase (phospho-ERK) compared with that after EGF treatment. Small interfering RNA (siRNA) that targets SPK1, but not SPK2, blocks VEGF-induced accumulation of Ras-GTP and phospho-ERK in T24 cells. In contrast to EGF stimulation, VEGF stimulation of ERK1/2 phosphorylation was unaffected by dominant-negative Ras-N17. Raf kinase inhibition blocked both VEGF- and EGF-stimulated accumulation of phospho-ERK1/2. Inhibition of SPK by pharmacological inhibitors, a dominant-negative SPK mutant, or siRNA that targets SPK blocked VEGF, but not EGF, induction of phospho-ERK1/2. We conclude that VEGF induces DNA synthesis in a pathway which sequentially involves protein kinase C (PKC), SPK, Ras, Raf, and ERK1/2. These data highlight a novel mechanism by which SPK mediates signaling from PKC to Ras in a manner independent of Ras-guanine nucleotide exchange factor.


* Corresponding author. Mailing address: Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine at the University of Southern California, Los Angeles, CA 90089. Phone: (323) 856-0523. Fax: (323) 865-0154. E-mail: broek{at}usc.edu.



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Role of sphingolipids in oestrogen signalling in breast cancer cells: an update.
O. Sukocheva and C. Wadham (2014)
J. Endocrinol. 220, R25-R35
   Abstract »    Full Text »    PDF »
The Molecular Basis for the Pharmacokinetics and Pharmacodynamics of Curcumin and Its Metabolites in Relation to Cancer.
M. Heger, R. F. van Golen, M. Broekgaarden, and M. C. Michel (2013)
Pharmacol. Rev. 66, 222-307
   Abstract »    Full Text »    PDF »
Sphingosine Kinase 1 Is Regulated by Peroxisome Proliferator-activated Receptor {alpha} in Response to Free Fatty Acids and Is Essential for Skeletal Muscle Interleukin-6 Production and Signaling in Diet-induced Obesity.
J. S. Ross, W. Hu, B. Rosen, A. J. Snider, L. M. Obeid, and L. A. Cowart (2013)
J. Biol. Chem. 288, 22193-22206
   Abstract »    Full Text »    PDF »
Phase II Study of Gemcitabine, Carboplatin, and Bevacizumab in Patients With Advanced Unresectable or Metastatic Urothelial Cancer.
A. V. Balar, A. B. Apolo, I. Ostrovnaya, S. Mironov, A. Iasonos, A. Trout, A. M. Regazzi, I. R. Garcia-Grossman, D. J. Gallagher, M. I. Milowsky, et al. (2013)
J. Clin. Oncol. 31, 724-730
   Abstract »    Full Text »    PDF »
Sphingosine kinase isoforms as a therapeutic target in endocrine therapy resistant luminal and basal-A breast cancer.
J. W. Antoon, M. D. White, J. L. Driver, M. E. Burow, and B. S. Beckman (2012)
Experimental Biology and Medicine 237, 832-844
   Abstract »    Full Text »    PDF »
Signal Transduction by Vascular Endothelial Growth Factor Receptors.
S. Koch and L. Claesson-Welsh (2012)
Cold Spring Harb Perspect Med 2, a006502
   Abstract »    Full Text »    PDF »
Ablation of Sphingosine Kinase-2 Inhibits Tumor Cell Proliferation and Migration.
P. Gao and C. D. Smith (2011)
Mol. Cancer Res. 9, 1509-1519
   Abstract »    Full Text »    PDF »
Sphingosine kinases regulate NOX2 activity via p38 MAPK-dependent translocation of S100A8/A9.
V. Schenten, C. Melchior, N. Steinckwich, E. J. Tschirhart, and S. Brechard (2011)
J. Leukoc. Biol. 89, 587-596
   Abstract »    Full Text »    PDF »
Bone marrow mononuclear cells shift bioactive lipid pattern in injured kidney towards tissue repair in rats with unilateral ureteral obstruction.
K. S. Verdoorn, R. S. Lindoso, J. Lowe, L. S. Lara, A. Vieyra, and M. Einicker-Lamas (2010)
Nephrol. Dial. Transplant. 25, 3867-3874
   Abstract »    Full Text »    PDF »
Suppression of colitis-driven colon cancer in mice by a novel small molecule inhibitor of sphingosine kinase.
A. A. Chumanevich, D. Poudyal, X. Cui, T. Davis, P. A. Wood, C. D. Smith, and L. J. Hofseth (2010)
Carcinogenesis 31, 1787-1793
   Abstract »    Full Text »    PDF »
Pharmacology and Antitumor Activity of ABC294640, a Selective Inhibitor of Sphingosine Kinase-2.
K. J. French, Y. Zhuang, L. W. Maines, P. Gao, W. Wang, V. Beljanski, J. J. Upson, C. L. Green, S. N. Keller, and C. D. Smith (2010)
J. Pharmacol. Exp. Ther. 333, 129-139
   Abstract »    Full Text »    PDF »
Resveratrol attenuates C5a-induced inflammatory responses in vitro and in vivo by inhibiting phospholipase D and sphingosine kinase activities.
P. D. A. Issuree, P. N. Pushparaj, S. Pervaiz, and A. J. Melendez (2009)
FASEB J 23, 2412-2424
   Abstract »    Full Text »    PDF »
Regulation of vascular physiology and pathology by the S1P2 receptor subtype.
A. Skoura and T. Hla (2009)
Cardiovasc Res 82, 221-228
   Abstract »    Full Text »    PDF »
Sphingosine-1-phosphate and modulation of vascular tone.
J. Igarashi and T. Michel (2009)
Cardiovasc Res 82, 212-220
   Abstract »    Full Text »    PDF »
Role and Therapeutic Potential of VEGF in the Nervous System.
C. Ruiz de Almodovar, D. Lambrechts, M. Mazzone, and P. Carmeliet (2009)
Physiol Rev 89, 607-648
   Abstract »    Full Text »    PDF »
Matrix Metalloproteinase-Activated Anthrax Lethal Toxin Inhibits Endothelial Invasion and Neovasculature Formation during In vitro Morphogenesis.
R. W. Alfano, S. H. Leppla, S. Liu, T. H. Bugge, C. J. Meininger, T. C. Lairmore, A. F. Mulne, S. H. Davis, N. S. Duesbery, and A. E. Frankel (2009)
Mol. Cancer Res. 7, 452-461
   Abstract »    Full Text »    PDF »
Hypoxia Enhances Sphingosine Kinase 2 Activity and Provokes Sphingosine-1-Phosphate-Mediated Chemoresistance in A549 Lung Cancer Cells.
S. E. Schnitzer, A. Weigert, J. Zhou, and B. Brune (2009)
Mol. Cancer Res. 7, 393-401
   Abstract »    Full Text »    PDF »
Thematic Review Series: Sphingolipids. Cross-talk at the crossroads of sphingosine-1-phosphate, growth factors, and cytokine signaling.
D. A. Lebman and S. Spiegel (2008)
J. Lipid Res. 49, 1388-1394
   Abstract »    Full Text »    PDF »
Interactions between sphingosine-1-phosphate and vascular endothelial growth factor signalling in ML-1 follicular thyroid carcinoma cells.
S. Balthasar, N. Bergelin, C. Lof, M. Vainio, S. Andersson, and K. Tornquist (2008)
Endocr. Relat. Cancer 15, 521-534
   Abstract »    Full Text »    PDF »
"Inside-Out" Signaling of Sphingosine-1-Phosphate: Therapeutic Targets.
K. Takabe, S. W. Paugh, S. Milstien, and S. Spiegel (2008)
Pharmacol. Rev. 60, 181-195
   Abstract »    Full Text »    PDF »
Basal and angiopoietin-1-mediated endothelial permeability is regulated by sphingosine kinase-1.
X. Li, M. Stankovic, C. S. Bonder, C. N. Hahn, M. Parsons, S. M. Pitson, P. Xia, R. L. Proia, M. A. Vadas, and J. R. Gamble (2008)
Blood 111, 3489-3497
   Abstract »    Full Text »    PDF »
Sphingosine Kinase 1 Is Up-regulated during Hypoxia in U87MG Glioma Cells: ROLE OF HYPOXIA-INDUCIBLE FACTORS 1 AND 2.
V. Anelli, C. R. Gault, A. B. Cheng, and L. M. Obeid (2008)
J. Biol. Chem. 283, 3365-3375
   Abstract »    Full Text »    PDF »
Protein Kinase D-mediated Phosphorylation and Nuclear Export of Sphingosine Kinase 2.
G. Ding, H. Sonoda, H. Yu, T. Kajimoto, S. K. Goparaju, S. Jahangeer, T. Okada, and S.-i. Nakamura (2007)
J. Biol. Chem. 282, 27493-27502
   Abstract »    Full Text »    PDF »
Suppression of Osteoclastogenesis by N,N-Dimethyl-D-erythro-sphingosine: A Sphingosine Kinase Inhibition-Independent Action.
H. J. Kim, Y. Lee, E.-J. Chang, H.-M. Kim, S.-P. Hong, Z. H. Lee, J. Ryu, and H.-H. Kim (2007)
Mol. Pharmacol. 72, 418-428
   Abstract »    Full Text »    PDF »
Activation of Sphingosine Kinase-1 Mediates Inhibition of Vascular Smooth Muscle Cell Apoptosis by Hyperglycemia.
B. You, A. Ren, G. Yan, and J. Sun (2007)
Diabetes 56, 1445-1453
   Abstract »    Full Text »    PDF »
Sphingosine Kinase Type 2 Activation by ERK-mediated Phosphorylation.
N. C. Hait, A. Bellamy, S. Milstien, T. Kordula, and S. Spiegel (2007)
J. Biol. Chem. 282, 12058-12065
   Abstract »    Full Text »    PDF »
The extracellular adherence protein from Staphylococcus aureus abrogates angiogenic responses of endothelial cells by blocking Ras activation.
A. C. S. Sobke, D. Selimovic, V. Orlova, M. Hassan, T. Chavakis, A. N. Athanasopoulos, U. Schubert, M. Hussain, G. Thiel, K. T. Preissner, et al. (2006)
FASEB J 20, 2621-2623
   Abstract »    Full Text »    PDF »
Pharmacologic Manipulation of Sphingosine Kinase in Retinal Endothelial Cells: Implications for Angiogenic Ocular Diseases.
L. W. Maines, K. J. French, E. B. Wolpert, D. A. Antonetti, and C. D. Smith (2006)
Invest. Ophthalmol. Vis. Sci. 47, 5022-5031
   Abstract »    Full Text »    PDF »
Sphingosine-1-Phosphate Via Activation of a G-Protein-Coupled Receptor(s) Enhances the Excitability of Rat Sensory Neurons.
Y. H. Zhang, J. C. Fehrenbacher, M. R. Vasko, and G. D. Nicol (2006)
J Neurophysiol 96, 1042-1052
   Abstract »    Full Text »    PDF »
FHL2/SLIM3 Decreases Cardiomyocyte Survival by Inhibitory Interaction With Sphingosine Kinase-1.
J. Sun, G. Yan, A. Ren, B. You, and J. K. Liao (2006)
Circ. Res. 99, 468-476
   Abstract »    Full Text »    PDF »
Low dose N, N-dimethylsphingosine is cardioprotective and activates cytosolic sphingosine kinase by a PKC{varepsilon} dependent mechanism.
Z.-Q. Jin and J. S. Karliner (2006)
Cardiovasc Res 71, 725-734
   Abstract »    Full Text »    PDF »
Intracellular sphingosine 1-phosphate mediates the increased excitability produced by nerve growth factor in rat sensory neurons.
Y. H. Zhang, M. R. Vasko, and G. D. Nicol (2006)
J. Physiol. 575, 101-113
   Abstract »    Full Text »    PDF »
Antitumor Activity of Sphingosine Kinase Inhibitors.
K. J. French, J. J. Upson, S. N. Keller, Y. Zhuang, J. K. Yun, and C. D. Smith (2006)
J. Pharmacol. Exp. Ther. 318, 596-603
   Abstract »    Full Text »    PDF »
Entry of muscle satellite cells into the cell cycle requires sphingolipid signaling.
Y. Nagata, T. A. Partridge, R. Matsuda, and P. S. Zammit (2006)
J. Cell Biol. 174, 245-253
   Abstract »    Full Text »    PDF »
The sphingosine and diacylglycerol kinase superfamily of signaling kinases: localization as a key to signaling function.
B. W. Wattenberg, S. M. Pitson, and D. M. Raben (2006)
J. Lipid Res. 47, 1128-1139
   Abstract »    Full Text »    PDF »
Macrophage's Proinflammatory Response to a Mycobacterial Infection Is Dependent on Sphingosine Kinase-Mediated Activation of Phosphatidylinositol Phospholipase C, Protein Kinase C, ERK1/2, and Phosphatidylinositol 3-Kinase.
M. Yadav, L. Clark, and J. S. Schorey (2006)
J. Immunol. 176, 5494-5503
   Abstract »    Full Text »    PDF »
Inhibition of growth factor-induced Ras signaling in vascular endothelial cells and angiogenesis by 3,3'-diindolylmethane.
X. Chang, G. L. Firestone, and L. F. Bjeldanes (2006)
Carcinogenesis 27, 541-550
   Abstract »    Full Text »    PDF »
SphK1 and SphK2, Sphingosine Kinase Isoenzymes with Opposing Functions in Sphingolipid Metabolism.
M. Maceyka, H. Sankala, N. C. Hait, H. Le Stunff, H. Liu, R. Toman, C. Collier, M. Zhang, L. S. Satin, A. H. Merrill Jr., et al. (2005)
J. Biol. Chem. 280, 37118-37129
   Abstract »    Full Text »    PDF »
Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling.
C. E. Chalfant and S. Spiegel (2005)
J. Cell Sci. 118, 4605-4612
   Abstract »    Full Text »    PDF »
Overexpression of sphingosine kinase 1 is an oncogenic event in erythroleukemic progression.
E. Le Scolan, D. Pchejetski, Y. Banno, N. Denis, P. Mayeux, W. Vainchenker, T. Levade, and F. Moreau-Gachelin (2005)
Blood 106, 1808-1816
   Abstract »    Full Text »    PDF »
Role of Sphingosine Kinase 2 in Cell Migration toward Epidermal Growth Factor.
N. C. Hait, S. Sarkar, H. Le Stunff, A. Mikami, M. Maceyka, S. Milstien, and S. Spiegel (2005)
J. Biol. Chem. 280, 29462-29469
   Abstract »    Full Text »    PDF »
Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation.
C. Feistritzer and M. Riewald (2005)
Blood 105, 3178-3184
   Abstract »    Full Text »    PDF »
Stable Knock-Down of the Sphingosine 1-Phosphate Receptor S1P1 Influences Multiple Functions of Human Endothelial Cells.
V. Krump-Konvalinkova, S. Yasuda, T. Rubic, N. Makarova, J. Mages, W. Erl, C. Vosseler, C. J. Kirkpatrick, G. Tigyi, and W. Siess (2005)
Arterioscler Thromb Vasc Biol 25, 546-552
   Abstract »    Full Text »    PDF »
Sphingosine Kinase 1 (SPHK1) Is Induced by Transforming Growth Factor-{beta} and Mediates TIMP-1 Up-regulation.
M. Yamanaka, D. Shegogue, H. Pei, S. Bu, A. Bielawska, J. Bielawski, B. Pettus, Y. A. Hannun, L. Obeid, and M. Trojanowska (2004)
J. Biol. Chem. 279, 53994-54001
   Abstract »    Full Text »    PDF »
A Vascular Gene Trap Screen Defines RasGRP3 as an Angiogenesis-Regulated Gene Required for the Endothelial Response to Phorbol Esters.
D. M. Roberts, A. L. Anderson, M. Hidaka, R. L. Swetenburg, C. Patterson, W. L. Stanford, and V. L. Bautch (2004)
Mol. Cell. Biol. 24, 10515-10528
   Abstract »    Full Text »    PDF »
Sphingosine Kinase Protects Lipopolysaccharide-Activated Macrophages from Apoptosis.
W. Wu, R. D. Mosteller, and D. Broek (2004)
Mol. Cell. Biol. 24, 7359-7369
   Abstract »    Full Text »    PDF »
PAM mediates sustained inhibition of cAMP signaling by sphingosine-1-phosphate.
S. C. Pierre, J. Hausler, K. Birod, G. Geisslinger, and K. Scholich (2004)
EMBO J. 23, 3031-3040
   Abstract »    Full Text »    PDF »
Membrane type 1-matrix metalloproteinase (MT1-MMP) cooperates with sphingosine 1-phosphate to induce endothelial cell migration and morphogenic differentiation.
S. Langlois, D. Gingras, and R. Beliveau (2004)
Blood 103, 3020-3028
   Abstract »    Full Text »    PDF »
Point-Counterpoint of Sphingosine 1-Phosphate Metabolism.
J. D. Saba and T. Hla (2004)
Circ. Res. 94, 724-734
   Abstract »    Full Text »    PDF »
Phosphorylation of the Immunomodulatory Drug FTY720 by Sphingosine Kinases.
A. Billich, F. Bornancin, P. Devay, D. Mechtcheriakova, N. Urtz, and T. Baumruker (2003)
J. Biol. Chem. 278, 47408-47415
   Abstract »    Full Text »    PDF »
Sphingosine Kinase Type 1 Induces G12/13-mediated Stress Fiber Formation, yet Promotes Growth and Survival Independent of G Protein-coupled Receptors.
A. Olivera, H. M. Rosenfeldt, M. Bektas, F. Wang, I. Ishii, J. Chun, S. Milstien, and S. Spiegel (2003)
J. Biol. Chem. 278, 46452-46460
   Abstract »    Full Text »    PDF »
Phosphorylation and Action of the Immunomodulator FTY720 Inhibits Vascular Endothelial Cell Growth Factor-induced Vascular Permeability.
T. Sanchez, T. Estrada-Hernandez, J.-H. Paik, M.-T. Wu, K. Venkataraman, V. Brinkmann, K. Claffey, and T. Hla (2003)
J. Biol. Chem. 278, 47281-47290
   Abstract »    Full Text »    PDF »
Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation.
S. M. Pitson, P. A. B. Moretti, J. R. Zebol, H. E. Lynn, P. Xia, M. A. Vadas, and B. W. Wattenberg (2003)
EMBO J. 22, 5491-5500
   Abstract »    Full Text »    PDF »
Sphingosine Kinase Type 2 Is a Putative BH3-only Protein That Induces Apoptosis.
H. Liu, R. E. Toman, S. K. Goparaju, M. Maceyka, V. E. Nava, H. Sankala, S. G. Payne, M. Bektas, I. Ishii, J. Chun, et al. (2003)
J. Biol. Chem. 278, 40330-40336
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882